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Introduction

Second order phase transition and spontaneous symmetry break-
ing (SSB) were pioneered by L Landau [1] in 1937 and plays a key 
role in the origin of  the universe as demonstrated by the origin 
of  mass played by the Higgs boson [2] as a second order phase 
transition and subsequent formation and decay of  particles after 
the BIG BANG are symmetry breaking phase transitions. Phase 
transition also plays a role in condensed matter physics as shown 
by the combination of  the fields solid state physics and liquid 
state physics into a single field of  condensed matter physics due 
to the role of  condensation and phase transition. In this paper 
we will use the power of  phase transition to explain turbulence 
and sonoluminescence and show that phase transition also plays 
a key role in the ultimate model of  the universe. But I will start 
with my recent discovery that every quantum field theory (QFT) 
problem also has a phase transition solution. Phase transition and 
statistical mechanics enable a more fundamental understanding 
of  these two phenomena. We started using Landau [1]’s second 
order phase transition. Since phenomenology, it cannot explain 
the region around the critical temperature. We made a preliminary 

application of  Ken Wilson [3]’s renormalization group method 
to turbulence and sonolumniescence which are both critical phe-
nomena and second order phase transition.

Discovery of  an Important Theorem of  Theoreti-
cal Physics

Recently I discovered an important theorem in theoretical physics 
that every quantum field theory (QFT) problem also has a phase 
transition solution. This was inspired by my own PhD (1969) thesis 
[4] in which I pioneered the use of  statistical mechanics approach 
to ultrasound propagation in semiconductor in the presence of  
high magnetic fields and low temperatures. The usual method is 
electron-phonon interaction of  many body theory of  QFT. In my 
thesis the Boltzmann transport equation, an important equation 
in non-equilibrium statistical mechanics is used. In this problem 
the phase transition is from metal to semiconductor and it is be-
yond the limit of  many body theory. For metals, electrons move 
freely and free electron model is sufficient. In semiconductor, 
there is attraction between electrons. The problem is too complex 
to be handled by many body theory alone and it is beyond the lim-
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it of  QFT. A beautiful example of  this characteristics is the BCS 
theory of  superconductivity [5] which has QFT solution of  many 
body theory of  electron-electron interaction and Coopers pairing 
as well as the second order phase transition solution from metal 
to superconductivity with spontaneous symmetry breaking (SSB). 
Since the mid 1960s, the name of  solid state physics has been 
changed to condensed matter physics to reflect the important role 
played by statistical mechanics and phase transition besides QFT. 
Thus my PhD (1969) [4] thesis played a role in the founding of  
the field of  condensed matter physics. Nowadays in the American 
Physical Society, condensed matter physics group has the largest 
number of  members. This shows the importance of  the field.

This important discovery also shows that Yang Mills theory [6] 
is only a partial solution of  the theory of  the Standard Model. 
It describes correctly the various forces and interaction between 
the particles. Higgs theory [2] which is phase transition solution 
is required to explain the origin of  mass. Thus a complete theory 
of  the standard model has two parts, the QFT solution and the 
phase transition solution.

Another illustration is before the 1960s, there were the separate 
fields of  solid state physics and liquid state physics and the only 
theoretical framework is many body theory of  QFT. With the dis-
covery of  Bose Einstein condensate, the two fields combined to 
form the new field of  condensed matter physics which shows the 
role played by phase transition solution. In fact, phase solution 
and statistical mechanics is required for liquid state physics as it is 
beyond the limit of  QFT.

There are also two other classic examples to illustrate this im-
portant discovery. One is Nambu [7]’s introduction of  second 
order phase transition from condensed matter physics into QFT 
to explain the broken local gauge invariance when mass is intro-
duced into the Yang Mills [6] theory. This confirms that phase 
transition is another part of  the solution of  the Standard Model. 
Another classic example is that of  Kenneth Wilson [3]’s introduc-
tion of  the renomalization group from statistical mechanics and 
phase transition into QFT to solve the renormalization problem 
in quantum chromodynamics (QCD). He introduced the lattice 
version or discrete version of  QCD in oppose to the continuum 
formulation of  the theory. This idea is originated from his prior 
works in statistical mechanics. This again confirms that phase 
transition solution (statistical mechanics) is another part of  the 
solution of  QFT. It is of  interest to note that Nambu [7] and 
Higgs [2] introduced SSB into particle physics but never men-
tioned ‘phase transition’ in their papers although second order 
phase transition involves SSB. This is because their focus is on the 
QFT solution and not the phase transition solution.

This discovery of  the characteristics of  a QFT problem is useful 
as a guide in solving QFT problem just like symmetry can be used 
as guide in solving complex physics equations as every fundamen-
tal law of  physics has symmetry properties as mentioned by Rich-
ard Feymann [8]. The role of  phase transition is very important 
because it can lead to discovery of  new material compared with 
QFT which only describes what is happening within the mate-
rial. An example is the discovery of  the topological insulators and 
superconductors from topological phase transition by Xiao-Liang 
Qi and Shou-Cheng Zhang [9] in 2010. The creation and the for-
mation of  matter has to do with phase transition. That is why 

phase transition is responsible for the creation of  the universe, 
for the creation of  the BIG BANG and the black hole and the 
origin of  mass.

Phase Transition – Explanation of  Turbulence

Turbulence is an important topic in nonlinear acoustics which 
is still not properly explained. The major breakthrough was the 
work of  Kolmogorov [10] in 1941 who is the first to introduce 
the statistical theory of  turbulence, resulting in the concept of  
turbulence as an inverse cascade. Turbulence is a very complex 
phenomenon and sofar we are unable to explain what is inside 
turbulence. Most of  the works done on turbulence are of  fluid 
mechanics or hydrodynamics in nature. To explain turbulence, 
one has to go beyond the limit of  fluid mechanics to statistical 
mechanics and phase transition.

I introduce field theory into turbulence. Kolmogorov [10]’s work 
shows the statistical properties of  the turbulence field. The field 
theory approach will also pave the way for the application of  
quantum field theory to turbulence below. Now there is a trend of  
moving towards second order phase transition and statistical me-
chanics to interpret turbulence. In 2009 WS Gan [11] proposed 
turbulence as a second order phase transition with SSB. Exam-
ples of  second order phase transition with SSB are magnetization, 
superconductivity and superfluidity, topics in condensed matter 
physics. Hence turbulence is also a field in condensed matter 
physics. My hypothesis has been subsequently supported by the 
works on Nigel Goldenfeld [12]'s group which showed that tur-
bulence has the same behavior as magnetization. In his paper, he 
presented experimental evidence that turbulence flows are closely 
analogous to critical phenomena from a reanalysis of  friction fac-
tor measurements in rough pipes. He found experimentally two 
aspects that confirm that turbulence is similar to second order 
phase transition such as magnetization in a ferromagnet. These are 
experimentally verified power law scaling of  correlation function 
which is remininescent of  the power law fluctuations on many 
length scales that accompany critical phenomena for example in 
a ferromagnet near its critical point which is second order phase 
transition. Another aspect is the phenomena of  data collapse or 
Widom scaling [13]. For example, in a ferromagnet, the equation 
of  state, nominally a function of  two variables is expressible in 
terms of  a single reduced variable which depends on a combina-
tion of  external field and temperature. This has been confirmed 
by the experiments of  J Nikuradze [14] in 1932 and 1933 which 
showed data collapse. Goldenfeld [12]’s work proposed that the 
feature of  the turbulence can be understood as arising from a 
singularity at infinite Reynolds number and zero roughness. Such 
singularities are known to arise as second order phase transition 
such as that occurs when iron is cooled down below the Curie 
temperature and becomes magnetic. The theory predicts that the 
small scale fluctuation in the fluid speed, a characteristic of  tur-
bulence are connected to the friction and can be demonstrated by 
plotting the data in a special way that causes all of  the Nijkuradze 
[14] curves at different roughness to collapse into a single curve. 
According to Goldenfeld [12]’s study, the formation of  eddies in 
turbulence might be a similar phenomenon to the lining of  spins 
in magnetization. Eddies are thus similar to the clusters of  atoms. 
Goldenfeld et al., [12] hope that as a result of  these discoveries, 
the approaches that solved the problem of  phase transitions will 
now find a new and unexpected application in providing a fun-
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damental understanding of  turbulence. In 2013, W. S. Gan [15] 
extended L Landau [1]’s theory of  second order phase transition 
from phenomenology to a more rigorous approach by using sta-
tistical mechanics and gauge theory. We propose turbulence as a 
classical analog of  Bose Einstein condensation and the Gross-
Pitaevskii equation is used to derive the condensate free energy. 
The critical value of  the order parameter, the condensation wave 
function is determined. This is the value when turbulence oc-
curs and SSB in the ground state of  the condensation free en-
ergy takes place. Being a condensate, there is molecular pairing in 
turbulence. We determine the numerical value of  the condensate 
free energy with the use of  the coupled oscillation model for the 
pair of  molecules. Our expression for the condensation free en-
ergy also yields a power series in terms of  the order parameter 
in agreement with the Landau phenomenology of  second order 
phase transition. This confirms that turbulence is a condensate, 
since Gross-Pitaevskii equation is the equation for condensate. 
We conclude that our understanding of  turbulence is a second 
order phase transition and is a condensate with molecular pairing.

Kolmogoro [10]’s theory is based on scale invariance and self-
similarity and Ken Wilson [7]’s application to critical phenomena 
and second order phase transition is also based on scale invari-
ance. Kolmogorov [10]’s theory is calculation of  energies of  dif-
ferent length scales and Ken Wilson [7]’s renormalization group 
application to critical phenomena is also calculation of  energies 
of  different length scales. So it is natural to extend Kolmogorov 
[10]’s scaling invariance to renormalization group treatment of  
turbulence. The renormalization group treatment of  turbulence is 
more sophisticated than Kolmogorov [10]’s scaling law treatment. 
Ken Wilson [7]’s papers on the application of  renormalization 
group to critical phenomena and second order phase transition 
confirmed that turbulence is a critical phenomena and second or-
der phase transition.

In hydrodynamics, the atomic fluctuations averaged out and 
classical hydrodynamics equations like Navier-Stokes equations 
emerged and this is continuum treatment. Unfortunately there 
is much more difficult class of  problems that fluctuations per-
sisted out to a microscopic measurement and fluctuations on all 
intermediate length scales are important too. Examples are fully 
developed turbulence flow, critical phenomena and elementary 
particles physics. This again confirms that turbulence has feature 
of  critical phenomena.

Turbulence is the case where microscopic fluctuations remain 
even to macroscopic wavelength. In fully developed turbulence 
in atmosphere, global air circulation becomes unstable leading to 
eddies on a scale of  thousands of  miles. These eddies break down 
into small eddies, which in turn break down until chaotic motions 
in all length scales down to millimetres have been excited. On the 
scales of  millimetres, viscosity damps the turbulence fluctuations 
and no small scales are important until atomic scales are reached.
Renormalization group (RG) approach is strategy for dealing with 
problems involving many length scales like turbulence. The strat-
egy is to tackle the problems in steps, one step for each scale. In 
the case of  critical phenomena, the problem technically is to carry 
out statistical averages over thermal fluctuations on all size scales. 
The RG approach is to integrate out the fluctuations in sequence 
starting with fluctuations on an atomic scale then moving to suc-
cessively larger scales until fluctuations on all scales have been 

averaged out.

The Landau [1] theory has the same physical motivation as hydro-
dynamics. Landau [1] assumes that only fluctuations on an atomic 
scale matters . In order to study the effects of  fluctuations only a 
single wavelength scale will be considered. This is the basic step 
in RG. In theoretical physics, the RG refers to a mathematical ap-
paratus that allows systematic investigation of  the changes of  a 
physical system as viewed at different distance scales. In particle 
physics, it reflects the changes in the underlying force laws modi-
fied in a quantum field theory (QFT) as the energy scale at which 
physical processes occur varies, energy/momenta and resolution 
distance scales being effectively conjugate under the uncertainty 
principle (cf  Compton wavelength). A change in scale is called a 
scale transformation. The RG is intimately related to scale invari-
ance & conformal invariance, symmetries in which a system ap-
pears the same at all scales(so called self-similarity). This property 
of  turbulence field is also used in Kolmogorov [10]’ scale invari-
ance treatment of  turbulence. This also confirms that the turbu-
lence field has both statistical and symmetries property. In Ken 
Wilson’s Nobel Lecture [7], he mentioned that fully developed 
turbulence has a critical point which is a feature of  critical phe-
nomena. Landau [1]’s theory of  second order phase transition is a 
phenomenology and a mean field theory. It failed in the behaviour 
of  the region surrounding the critical point or the critical tem-
perature. The RG method will improve on this. Only the effects 
of  wavelengths long compared to atomic scales will be discussed 
and it will be assumed that only modest correction to the Landau 
[1] theory are required.

To extend the renormalization group method to turbulence, one 
has to introduce the fluctuation of  length scale into the Landau-
Ginzburg integral of  free energy:

( ) ( ) ( ) ( )2 4
L

2
L +R[ . ] + U  d

LF d x x xxψ ψ ψ∇= ∫  ----- (1)

where Ψ = condensation wave function = order parameter, R,U = 
constants and are functions of  temperature T, d = dimension and 
L = length somewhat larger than atomic dimension.

Here we treat turbulence as a Bose-Einstein condensate. The RG 
method treatment of  the critical point is an improvement over 
the Landau ‘s phenomenology of  second order phase transition 
which failed at the region near the critical point or critical tem-
perature where the second order phase transition takes place. This 
is because Landau ignores the persistent intermediate length scale 
and treat it as the averaging out as the atomic length scale which 
amounts to a continuum which is not the case.

The importance of  long wavelength fluctuation means that the 
parameters R and U are dependent on L. The L dependence per-
sists only out to the correlation length є. Fluctuations with wave-
length >є will be seen to be negligible. Once all wavelengths of  
fluctuations out to L ~є have been integrated out, one can use the 
Landau theory. This means that we can substitute in Rε and in Uε 
the following equations:

Ψ ∞ (Tc - T)1/2 ----- (2) and
є ∞ 1/√R ----- (3)
In order to study the effects of  fluctuations, only a single wave-
length scale will be considered. To be precise, consider only fluc-
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tuation with wavelengths lying in an infinitesimal interval L to L 
+ δL. As the fluctuation on each length scale are integrated out 
a new free energy functional FL+δL is generated from the previ-
ous functional FL. This process is repeated many times. If  FL and 
FL+δL are expressed in dimensionless form, then one finds that 
the transformation leading from FL to FL+δ is repeated in identi-
cal form many times. The transformation group thus generated 
is called the renormalization group. As L becomes large the free 
energy FL approaches a fixed point of  the transformation and 
thereby becomes independent of  details of  the system at the 
atomic level. This leads to an explanation of  the universality of  
critical behavior for different kinds of  systems at the atomic level.

The principal critical point is characterized by two parameters: the 
dimension d and the the number of  internal components n. Great 
efforts were made to map out critical behavior as functions of  d 
and n. A serious problem in the renormalization group transfor-
mation (real space or otherwise) is that there is no guarantee that 
they will exhibit fixed points. For some renormalization group 
transformations, iteration of  a critical point does not lead to a 
fixed point presumably field interactions with increasingly long 
range forces.

Phase transition is another example of  the theorem that every 
QFT problem also has a phase transition solution. The phase 
transition part is the interaction between the molecules and the 
phase transition solution is the second order phase transition 
from the laminar flow phase to the turbulence flow phase.

Phase Transition Explanation of  Sonolumines-
cence

Sonoluminescence was discovered in France in 1933 [16] but sofar 
it has not been properly explained. Sonoluminescence is another 
example that it has both a QFT solution and a phase transition 
solution. The usual explanation of  the light emission is the QFT 
solution as it describes the molecular interaction in chemistry us-
ing quantum mechanics which is known as chemiluminescence. 
To have a complete solution for the explanation of  sonolumines-
cence, the phase transition from the heat energy phase to the light 
energy phase has to be added.

During the last fifteen years, there is a trend towards the applica-
tion of  statistical mechanics and phase transition explanation of  
sonoluminescence. Before that, the usual explanation is based on 
hydrodynamics and the use of  Navier Stokes equation. This can 
only describe the phenomenon without explaining the root of  
the problem which is beyond the capability of  hydrodynamics. It 
also shows the application of  the theorem that every QFT prob-
lem also has a phase transition solution. The QFT problem is the 
interaction among the molecules and the phase solution is the 
conversion from the heat phase to the light phase.

Sonoluminescence can be interpreted as a two stages process. 
The first stage happens when the bubble collapses with broken 
spherical symmetry. Tremendous heat is released with tempera-
tures reaching 20,000 kelvin. This part of  the theory has been 
described in details by D F Gaitan et al., [17] The second stage is 
the cooling down of  the system with subsequent light emission. 
The description has been by K S Suslick et al., [18]. Our work 
here will focus on the second stage of  the process, on the phase 

transition solution as the QFT solution using quantum mechanics 
to describe light emission due to molecular interaction has been 
done by several authors.

Second order phase transition with SSB in statistical physics was 
pioneered by L Landau [1]. Here we describe sonoluminescence 
as a Bose Einstein condensate and the following Gross-Pitaevskii 
equation is used:

2 2 2
2

2

4( ) / ( ) / ( ) ( )
2 s
h hV r a r r r
m r M

π ϕ ϕ µϕ
→ → → → ∂

+ + = ∂   ----- (4)

where M = mass of  the boson, V = external potential, as = boson-
boson scattering length, μ = chemical potential & ћ = retarded 
Planck’s constant.

The Landau order parameter here is the condensation wave func-
tion. The Gross-Pitaevskii equation describes the ground state of  
a quantum system of  identical bosons using the Hartree-Fock ap-
proximation and the potential interaction model.

In the Hartree-Fock approximation, the total wave function φ of  
the system of  N bosons is taken as a product of  single, particle 
function φ:

1 2 1 2( , ,..........., ) ( ) ( )......... ( )N Nr r r r r rϕ ϕ ϕ ϕ
→ → → → → →

=  ----- (5)

The pseudopotential model Hamiltonian of  the system is given 
as:

H =

2 2 2

21

4( ) ( )
2

N
i jsi i j

h hV r Q r r
m r M

π δ
→ → →

− <

 ∂
− + + − ∂ 

∑ ∑   
---(6)

where ( )rδ
→

 is the Dirac delta function. (4) is the model equation 
for the single particle wave function in a Bose-Einstein conden-
sate. It is similar in form to the Ginzburg-Landau equation. Since 
light emission occurs after temperature cools down or condenses 
after the tremendous heat emission after bubble collapse, sonolu-
minescence can be interpreted as a Bose Einstein condensate and 
hence the Gross-Pitaevskii equation is used.

A Bose Einstein condensate is a gas of  bosons that are in the 
same quantum state and thus can be described by the same wave 
function. A free quantum particle is described by a single-particle 
Schrondinger equation. Interaction between particles in a real 
gas is taken into account by pertinent many body Schrodinger 
equation. If  the average spacing between the particles in a gas 
is greater than the scattering length, then one can approximate 
the true interaction potential that features in this equation by a 
pseudopotential. The nonlinearity of  the Gross-Pitaevskii equa-
tion has its origin in the interaction between the particles. This 
becomes evident by equating the coupling constant of  interaction 
in the Gross-Pitaevskii equation with zero on which the single 
particle Schrondinger equation describing a particle inside a trap-
ping potential is recovered. Then the equation has the form of  
Schrondinger equation with the addition of  an interaction term. 
The couping constant g is proportional to the scattering length of  
two interacting bosons:
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g = 
24

s
h a

M
π

 ----- (7)

The energy density is:

2 2
2 4

2

1( ) / ( ) / / ( ) /
2 2
h V r r g r
m r

ε ϕ ϕ
→ → → ∂

= + + ∂   ----- (8)
where φ = condensation wave function, = Landau order param-
eter and V = external potential.
 
The condensation free energy ∆ε is given by the difference be-
tween the light and heat state free energy. From (8), the light state 
free energy is given by:

2 2
2 4

2

1( ) / ( ) / / ( ) /
2 2l l l
h V r r g r
m r

ε ϕ ϕ
→ → → ∂

= + + ∂   ----- (9)
The heat state free energy is given by:

2 2
2 4

2

1( ) / ( ) / / ( ) /
2 2h h h
h V r r g r
m r

ε ϕ ϕ
→ → → ∂

= + + ∂   ----- (10)

Where 41 / ( )
2

g rϕ
→

+  is the nonlinear interaction term.

We consider that the light emission is due to nonlinear interaction 
between the molecules and the mechanism of  the interaction is 
the pairing of  the water molecules, a special case of  nonlinear 
interaction. This is the quantum field theory solution of  sono-
luminescence. The pairing of  water molecules gives rise to light 
emission and this is the origin of  sonoluminescence. The conden-
sation free energy is given by:

2 41/ ( ) / ( ) ( ) / ( ) / ( )
2l h l h l hr V r V r r g gε ε ε ϕ ϕ

→ → → →

∆ = − = − + −
 ----- (11)

This will be the ground state of  the Hamiltonian of  light emission 
free energy. The critical value of  the order parameter is corre-
sponding to that for minimum condensation free energy and this 
is when light emission occurs. There is also spontaneous symme-
try breaking (SSB) at the ground state giving rise to second order 
phase transition and light emission. The critical values of  SSB can 
be obtained as follows:

22( ( ) ( ) ( ) 2( ) / ( ) / 0
( )

l h l hV r V r r g g r
r

ε ϕ ϕ
ϕ

→ → → →

→

∂
∆ = − + − =

∂  
This will produce

( )rϕ
→

=0 and 22( ( ) ( )) 2( ) / ( ) / 0l h l hV r V r g g rϕ
→ → →

− + − =  or

( ) h l

l h

V Vr
g g

ϕ
→ −

= ±
−  ------ (12)

The meaning of  ( )rϕ
→

 = 0 means that there is only one value for 
the order parameter and there is no broken symmetry [12]. shows 
that there are two values of  the order parameter or condensation 
wave function when light emission occurs or when there is a de-
generacy of  the ground state of  the Hamiltonian. This confirms 
spontaneous symmetry breaking in the ground state of  the con-
densation free energy when light emission occurs.

Experimental confirmation of  cooling after bubble collapse 
down to the critical temperature for light emission

The phenomenon of  sonoluminescence is primarily of  thermal 
origin, i.e. caused by high temperatures rather than high pressure 
or densities. The determination of  the minimum temperature re-
quired of  light emission is therefore important in understanding 
the mechanism involved. According to the theories, the minimum 
temperature necessary to generate observables sonoluminescence 
is between 2000 and 3000K corresponding to relative densities 
of  100-200. Suslick et al., [18] measured a temperature of  5200 
± 650K inside cavitation bubbles. This confirms that indeed the 
system cools down after bubble collapse to reach the critical tem-
perature of  2000 to 3000 K for light emission and that there is 
a second order phase transition after the bubble collapse to pro-
duce light emission.

The internal temperature measured in Suslick et al., [18]’s ex-
periments indicate that present theories of  bubble pulsation may 
overestimate the internal temperature and possibly the internal 
pressure too. The over estimation may be explained by the failure 
of  the assumptions made in the models. Specifically the disso-
ciation of  the gas molecules due to the high temperature attend 
will increase the number density and therefore the internal gas 
pressure, resulting the bubble collapse sooner than predicted. 
When temperatures of  5000K or higher are reached, it is likely 
that the energy of  the collapse is partitioned into other chemical 
processes, instead of  increasing the temperature of  the gas. Some 
of  these processes include dissociation of  the gas molecules and 
ionization. Thus, as the strength of  the collapse increases, i.e. at 
larger value of  pressure, the internal temperature is expected to 
reach a plateau. In addition, the models underestimate the effects 
of  energy dissipation due to the compressibility of  the liquid. A 
compressible liquid results in the formation of  shock wave that 
may cause a significant portion of  the collapse energy away from 
the bubble.

Spontaneous Energy Focusing in Sonolumines-
cence

There is spontaneous energy focusing in sonoluminescence Low 
amplitude sound energy entering a fluid spontaneously focuses by 
12 orders of  magnitude to create a flash of  light and a new phase 
of  matter. The energy Poynting vectors of  the molecules all focus 
in one direction in space, causing the system to break the rotation-
al invariance of  the Hamiltonian spontaneously. This confirms 
that sonoluminescence is a second order phase transition.

Plasma Formation During Sonoluminescence

Also plasma formation has been observed during sonolumines-
cence [19]. Plasma is the fourth state of  matter. This confirms 
that sonoluminescence is phase transition.

Thus phase transition provides the big picture of  sonolumines-
cence with the gaps in the details to be further investigated.

Turbulence as a Critical Phenomena

Ken Wilson [3] Nobel lecture described turbulence as a critical 
phenomena. Since critical phenomena, it is also a second order 
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phase transition. There are a lot of  complex problems in science, 
when complex microscopic behaviour unlies macroscopic ef-
fects. In simple cases, the microscopic fluctuations average out 
when larger scales are considered and the averaged quantities sat-
isfy classical continuum equations. Hydrodynamics is a standard 
example of  this where atomic fluctuations averaged out and the 
classical hydrodynamic equations emerge. Unfortunately there is a 
much more difficult class of  problems where fluctuations persist 
out to macroscopic wavelength and fluctuations on all intermedi-
ate length scales are important too. Fully developed turbulence is 
an example of  the last category.
 
In fully developed turbulence in the atmosphere, global air circu-
lation becomes unstable, leading to eddies on a scale of  thousands 
of  miles. These eddies break down into smaller eddies which in 
turn break down until chaotic motion on all length scales down 
to millimetres have been excited. On the scale of  millimetres, vis-
cosity damps the turbulence fluctuations and no smaller scales 
are important until atomic scales are reached. A critical point is a 
special example of  a phase transition. It takes many variables to 
characterize a turbulent flow near the critical point.
 
The renormalization group approach is a strategy for dealing with 
problems involving many length scales. The strategy is to tackle 
the problem in steps, one step for each length scale. In the case of  
critical phenomena, renormalization group is an improvement to 
Ginzburg-Landau [1] theory. The problem technically is to carry 
out statistical average over thermal fluctuations on all size scales. 
The renormalization group approach is to integrate out the fluc-
tuations in sequence starting with fluctuations on an atomic scale 
until fluctuations on all scales have averaged out . The renormali-
zation group method is an improvement to Ginzburg-Landau [1] 
theory.
 
The renormalization group method that was defined in 1971 by 
Ken Wilson [3] embraces both practical approximations leading 
to actual computation and a formalism. Here the central idea of  
fixed point is illustrated. As the fluctuations on each length scale 
are integrated out a new free energy functional FL+δL is generated 
from the previous functional FL, This process is repeated many 
times. If  FL and FL+δL are expressed in dimensionless forms then 
one finds that the transformation leading from FL to FL+δL is re-
peated in identical forms many times . The transformation group 
then generated is called the renormalization group. As L becomes 
large the free energy FL approaches a fixed point of  the transfor-
mation and thereby becomes independent of  the details of  the 
system at the atomic level. This leads to an explanation of  the 
universality of  critical behaviour for different kinds of  systems at 
the atomic level.

Application of  Renormalization Group Method to 
Turbulence

To demonstrate the fixed point form of  the free energy func-
tional, it must be put into dimensionless form. Lengths need to be 
expressed in units of  L and and rewritten in dimensionless forms.
The Ginzburg-Landau [1] free energy is given as :

F = [ ]{ }2 2 4( ) ( ) ( )d x M x RM x UM xδ + +∫  ----- (13)

where R,U = temperature dependent constants, M = Landau or-
der parameter.

We shall assume Ginzburg-Landau [1] analysis is valid for the 
form of  F. For long wavelength fluctuations mean that the pa-
rameters R and U depend on L. Thus F should be denoted FL:

FL = [ ]{ }2 2 4( ) ( ) ( )d
L Ld x M x R M x U M x+ +∫  ----- (14)

The breakdown of  analyticity at the critical point or critical tem-
perature is a simple consequence of  this L dependence. The L de-
pendence persists only out to the correlation length ξ: fluctuations 
with wavelength >ξ will be seen to be always negligible. Once 
all wavelengths of  fluctuations out to L~ξ have been integrated 
out, one can use the Ginzburg-Landau- [3] theory. Since ξ is itself  
non-analytic in T at T= Tc the dependence of  Rξ and Uξ on ξ in-
troduces new complexities at the critical point.

In a world with greater than four dimensions, the Ginzburg-Lan-
dau [3] picture is correct. Four dimensions is the dividing line, 
-below four dimensions, fluctuations on all scales up to the cor-
relation length are important and Ginzburg-Landau [1] theory 
breaks down. The role of  long wavelength fluctuations is very 
much easier to work out near four dimensions where their effects 
are small. So this is the only case that will be discussed here. Only 
the effects of  wavelengths long compared to atomic scales will be 
discussed and it will be assumed that only modest corrections to 
the Ginzburg-Landau [1] theory are required.

For d<4 and sufficiently large L, Ken Wilson [3] has obtained:

( 4) 24 1
2 (4 ) /

d dRL cL L
d

δ

δ δ
− −−

= −
− −  ----- (15)

and
4(4 )

9
d

L
dU L −−

=
 ------ (16)

The above equations (13) to (16) are valid for all Bose Einstein 
condensates. They are applied here to turbulence which also has 
the above scale invariance properties but with its own characteris-
tic of  L and correlation length.
 
First the Richardson [20]’s cascade picture of  turbulence known 
as the energy cascade:

1. A turbulent flow is composed by eddies of  different sizes,
2. The large eddies are unstable and eventually breaks up into 
smaller eddies and so on,
3. The energy is passed down from the large scales of  motion to 
smaller scales until reaching a sufficiently small length scales such 
that the viscosity of  the fluid can effectively dissipate the kinetic 
energy.

The energy cascade is described as a breakdown process of  ed-
dies into smaller eddies which fill a lesser portion of  space with a 
spatial distribution prescribed by the model. 
The modern concept of  fully developed hydrodynamic turbu-
lence is based on Richardson [20]’s cascade model for Re = vL/ν 
>>1 where Re = Reynolds number, ν = viscosity, v = velocity 
flow and L = size of  a streamlined body = characteristic scale of  
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the velocity field:

L1 < L, Re2 = ν2L2/ν < Re1

This cascade of  decays goes on until the Reynolds number calcu-
lated with the help of  the size and the velocity of  nth generation 
eddies is about some Recritical  :

1Re Re Re 2.......... Re Ren critical> > > �  ------ (17)

The last generation eddies are stable and they dissipate due to vis-
cosity . At the critical value of  the Reynolds number, L is given by

3/4 1/4Re ( / )n criL ρ ε=  ----- (18)

where ρ = density of  fluid.

Kolmogorov [10]'s second hypothesis states that for very high 
Reynolds numbers the statistics of  small scales are universally and 
uniquely determined by the kinematic viscosity ν and the rate of  
energy dissipation ε. With only these two parameters, the unique 
length that can be formed by dimension analysis is:

η = (ν3/ε)1/4 ------ (19)

where η = Kolmogorov’s length scale, ν = kinematic viscosity, and 
ε = rate of  energy dissipation.

A turbulent flow is characterized by a hierarchy of  scales 
through which the energy cascade takes place. Dissipation of  ki-
netic energy takes place at scales of  the order of  Kolmogorov 
length(Kolmogorov microscales) η, while the input of  energy 
into the cascade comes from the decay of  the large scales, of  
order L. These two scales at the extremes of  the cascade can dif-
fer by several orders of  magnitude at high Reynolds numbers. In 
between there is a range of  scales(each one with its own charac-
teristic length r) that has formed at the expense of  the energy of  
the large ones. These scales are very large compared with the Kol-
mogorov length, but still very small compared with the large scale 
of  the flow(i.e. η << r << L). Since eddies in this range are much 
larger than the dissipative eddies that exist at Kolmogorov scales, 
kinetic energy is essentially not dissipated in this range, and its is 
merely transferred to smaller scales until viscous effects become 
important as the order of  the Kolmogorov scale is approached. 
Within this range inertial effects are still much larger than viscous 
effects, and it is possible to assume that viscosity does not play a 
role in their internal dynamics (for this reason this range is called 
inertial range).

Here we replace the L in eqns (15) and (16) by the Kolmogorov 
length η. From the equation for the Reynolds number:

Re = vL/ν 
We have L = Reν/v -----(20)

So δL = (ν/ ν) δRe ------(21)

The δL in the free energy functional FL+δL will be replaced by the 
δL in eqn.(9). This will enable the iteration work from FL to FL+δL 
to obtain the fixed point or the critical point/critical temperature.

Ken Wilson [3] has derived a relation between the critical tem-
perature where phase transition temperature takes place and the 
correlation length as:

( ) 1/2 (4 )/61/2 d
cR T T ξ

ξ
− −− = −

 ------ (22)
where ξ = correlation length.

Conclusion

My discovery that every QFT problem also has a phase transition 
solution shows the power of  phase transition. It is responsible 
for the creation and formation of  matter, including the creation 
of  the universe, the BIG BANG, the black hole, the creation and 
the decay of  particles. Phase transition goes beyond the Standard 
Model. It gives the big picture of  the ultimate model of  the uni-
verse with details of  interaction and forces between the particles, 
including the dark energy and dark matter particles to be given by 
QFT solutions such as the supersymmetry. Phase transition can 
be used to give a better explanation for turbulence and sonolumi-
nescence. The renormalization group(RG) method is applied to 
turbulence as turbulence is a critical phenomena and second or-
der phase transition. This is a correction to the Ginzburg-Landau 
theory of  second order phase transition which is phenomenology 
and a mean-field theory and unable to describe the region near 
the critical point or critical temperature correctly. This is process 
of  iteration to reach the fixed point or critical point. We have laid 
down the equations and the algorithms for this work. Phase tran-
sition can also lead to the discoveries of  new phase of  matter and 
new materials. It even plays a role in the grand unification of  the 
four fundamental forces of  nature. This is another example of  
unification of  four forces of  nature being a quantum field theory 
problem also has a phase transition solution.
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