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Introduction

Traditional clinical development of  a novel therapy utilizes the 
“one-size-fits-all” approach by testing treatment effect in the en-
tire patient population with a specific disease. It assumes that re-
sponse in the disease population is homogeneous. In his State of  
the Union address in early 2015, President Obama announced 
that he is launching the Precision Medicine Initiative - a bold new 
research effort to revolutionize how we improve health and treat 
disease. President Obama pointed out that precision medicine is 
an innovative approach that takes into account individual differ-
ences in people’s genes, environments, and lifestyles. Unlike tradi-
tional approach, precision medicine proposes the customization 
of  healthcare, with medical decisions, practices, and treatments 
being tailored to the individual patient.

Recent advances in genetic engineering such as DNA sequencing 
and mRNA transcript profiling has made a finer taxonomy of  
disease possible, which enables the development of  precise diag-
nostic, prognostic, and therapeutic paradigms for specific subsets 
of  patients for achieving the ultimate goal of  precision medicine. 
Thus, these targeted therapies may benefit only a subset of  the 
entire patient population and may not benefit or even harm the 
rest of  the population. On the other hand, biomarkers have the 
potential to provide substantial added value to the current medi-

cal practice for the purpose of  precision medicine. Biomarkers 
are widely expected to be used as a tool in drug discovery, under-
standing the mechanism of  action of  a drug, investigating efficacy 
and toxicity signals at an early stage of  pharmaceutical develop-
ment, and in identifying patients likely to response to treatment.

As a result of  these new opportunities and challenges, the tradi-
tional paradigm of  drug development not taking into account re-
sponse heterogeneity may be suboptimal. To embark on the mis-
sion of  precision medicine, innovative statistical designs utilizing 
biomarker enrichment strategies (“biomarker-driven clinical trial 
designs”) are becoming increasingly attractive. The term enrichment 
is defined as “the prospective use of  any patient characteristic to select a 
study population in which detection of  a drug effect (if  one is in fact present) 
is more likely than it would be in an unselected population”. (FDA, 2012). 

The study of  rare diseases fits the model of  precision medicine 
naturally: at least 80% of  them arise from genetic variations, and 
show varying degree of  heterogeneity from patient to patient 
[13]. Thus, biomarker-driven clinical trials are useful in studying 
rare diseases, especially when the availability of  patients with rare 
diseases is limited. Biomarkers have the potential of  helping in 
identifying patients which are most likely to respond to the test 
treatment under investigation. Consequently, biomarker-driven 
designs may result in (1) smaller study sizes, (2) higher probability 
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of  trial success, and (3) enhancement of  the benefit-risk relation-
ship. 

In the past decade, precision medicine and biomarker-driven clini-
cal trials have been discussed and studied by many authors in the 
literature, e.g., Hawgood et al., (2015) [14], Collins and Varmus 
(2015) [10], Jameson and Longo (2015) [16], Bayer and Galea 
(2015) [2], Mirnezami et al., (2012) [35], Simon and Maittournam 
(2004) [25], Mandrekar and Sargent (2009) [20], Weir and Walley 
(2006) [35], Simon (2010) [24], and Baker et al., (2012) [1]. In 
practice, biomarker-driven adaptive designs are adaptive designs 
that allow us to select target population based on interim data 
[26]. Simon and Wang (2006) [27] and Freidlin, Jiang and Simon 
(2010) [11] studied a genomic signature design, Jiang, Freidlin and 
Simon (2007) [4] proposed Biomarker-adaptive threshold design, 
Chang (2006, 2007) [5], Wang et al., (2007) [33], Wang, Hung and 
O'Neill (2009) [34] and Jenkins et al., (2011)[17] studied popula-
tion enrichment design using biomarker, which allow interim de-
cision on the target population based on power or utility. Zhou 
et al., (2008) [37] studied Bayesian adaptive randomization design 
that provides patients with potentially more effective treatments. 
Song and Pepe (2004) [28] studied markers for selecting a patient's 
treatment. Studies on biomarker-adaptive design were done by 
Beckman, Clark, and Chen (2011) [3] for oncology trials. Recently, 
Wang (2013) [30], Wang, Chang, and Menon (2014, 2015) [31, 32]
using a two-level relationship between continuous biomarker and 
the primary endpoint to solve the mystery why the first level cor-
relation play a limited role in adaptive design. 

In this article, we give an overview of  biomarker-driven clinical 
trial designs utilizing predictive biomarker enrichment strategies 
that are growing in the statistical literature, with a focus on adap-
tive designs so as to increase the power and efficiency to detect an 
effective therapy with regard to a predictive biomarker in clinical 
trial. A predictive biomarker is type of  biomarker that identifies 
patients who are likely to benefit from a particular treatment, in 
contrast to a prognostic biomarker which is associated with only 
the disease outcome. Biomarkers can be used in two-group design 
and multi-group (pick-the-winner, drop inferior arms, and add-
arm) enrichment design (Shun, Lan, Song, 2008; Wang, Chang, 
Menon, 2015) [23, 32]. However, we will focus on the two-group 
designs. 

Classical Designs

Biomarker - Enrichment Design

The biomarker-enrichment design is a randomized design involv-

ing only patients with a specific biomarker status (Freidlin et al., 
2010; Sargent et al., 2005; Chang, 2006, 2007) [4, 5, 11, 22]. This 
design is most appropriate when the mechanistic behavior of  
drug is known and there is compelling preliminary evidence of  
benefits in a subgroup of  patient population defined by a specific 
biomarker status.

In biomarker-enrichment design, patients are screened for the 
presence or absence of  a biomarker(s) profile. After extensive 
screening, only patients with the presence of  a certain biomarker 
characteristic or profile are enrolled in the clinical trial. In princi-
ple, this design essentially consists of  an additional criterion for 
patient inclusion in the trial (Figure 1) [15].

A recent example for the enrichment design was of  mutated 
BRAF-kinase [7]. Almost 50% of  melanomas have an activat-
ing V600E BRAF mutation. This leads to the hypothesis that in-
hibition of  mutated BRAF kinase will have meaningful clinical 
benefit. Hence only patients who tested positive for V600EBRAF 
mutation were enrolled in the study. Patients were randomized to 
an inhibitor of  mutated BRAF-kinase or control treatment.  As 
hypothesized, the large treatment benefit was observed in the pre-
specified subgroup.   

The following considerations should be taken into account in this 
design – 1) during the conduct of  the study, it is important to 
have rapid turnaround times for the assay results in order to enroll 
patients faster; 2) the assay testing should be consistent between 
different labs; 3) restricted enrollment does not provide data to 
establish that treatment is ineffective in biomarker negative pa-
tients; 4) a low prevalence of  the marker may be challenging op-
erationally and financially.

Biomarker Stratified Design

In biomarker stratified design, patients are tested for biomarker 
status and then separately randomized according to their positive 
or negative status of  the marker [11]. This design is chosen when 
there is no preliminary evidence to strongly favor restricting the 
trial to patients with specific biomarker profile that would neces-
sitate a biomarker-enrichment design.

In biomarker stratified design, randomization is done using mark-
er status as the stratification factor; however only the patients 
with a valid measurable marker results are randomized (Figure 2).   
Two separate hypotheses tests are conducted to determine the 
treatment effect within each biomarker group.  The sample size is 
calculated separately to power the testing within each biomarker 

Figure 1. Biomarker-enrichment Design.
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group.  Another variation to the hypothesis test within the same 
design is to conduct a formal marker by treatment interaction test 
to see if  the treatment effect varies within each marker status sub-
group.  In this case, the study is powered based on the magnitude 
of  interaction.

Sequential Testing Strategy Design

Sequential testing strategy designs can be viewed as a special 
case of  the classical randomized clinical trial for all comers or 
unselected patients. In this design, randomization is not stratified 
by biomarker status. Thus, sample sizes in the treatment groups 
within each biomarker defined subgroup should be large enough 
to balance important prognostic baseline factors to ensure effec-
tive results. Two testing strategies are frequently used: test overall 
difference followed by subgroup; test subgroup followed by over-
all population.

Test Overall Difference Followed by Subgroup: Simon and 
Wang (2006) [27] proposed an analysis strategy where the over-
all hypothesis is tested first to see if  there is a difference in the 
response in new treatment versus the control group in entire 
patient population. If  there is no difference and the response is 
not significant at a pre-specified significance level (for example 
0.04), then the new treatment is compared to the control group 
in the biomarker positive patients.  The second comparison uses 
a threshold of  significance which is proportion of  the traditional 
0.05 not utilized by the initial test (for example 0.01).  This ap-
proach is useful when the new treatment is believed to be effec-
tive in a wider population, and the subset analysis is supplemen-
tary and used as a fall back option (Figure 3).

Song and Chi (2007) [29] later proposed a modification of  the 
above method.  Their method takes into account the correlation 
between the test statistics of  the hypotheses of  the overall popu-
lation and the biomarker positive population. 

Test subgroup followed by the overall population: In this 
analysis strategy, the hypothesis for the treatment is first tested 
in the biomarker positive status patients and then tested in the 
overall population.  This strategy is appropriate when there is a 
preliminary biological basis to believe that biomarker status posi-
tive patients will benefit more from the new drug and there is 
sufficient marker prevalence to appropriately power the trial. 
Study would be powered for effect in biomarker positive status 
group and the size of  biomarker negative status group could be 
determined separately to allow a reasonable estimate of  effect in 

marker negative group. In this closed testing procedure, the final 
type I error rate is always preserved (Figure 4).

Marker-based Strategy Design

In this design, patients are randomly assigned to treatment de-
pendent or independent of  the marker status (Figure 5). All pa-
tients randomized to the non-biomarker based arm receive the 
control treatment. In the biomarker based arm, the biomarker 
positive patients will receive the experimental therapy while bio-
marker negative patients receive control treatment [11, 22].

The outcome of  all of  the patients in the marker based sub-
group is compared to that of  all patients in the non-marker based 
subgroup to investigate the predictive value of  the marker. One 
downside of  this design is that patients treated with the same regi-
men are included in both the marker-based and the non–marker-
based subgroup, resulting in a substantial redundancy.  Another 
disadvantage is the inability to examine the effect of  targeted 
therapy in biomarker negative patients as none of  these patients 
receive it.   The treatment difference between the new treatment 
and the control treatment can be diluted by marker-based treat-
ment selection and sometimes can be a poor choice as compared 
to the randomized design.

Hybrid Design

Hybrid design should be considered when there is compelling 
prior evidence demonstrating the efficacy of  a certain treatment 
for a biomarker subgroup renders it unethical to randomly assign 
patients with that particular biomarker status to other treatment 
options. In this design, only marker-positive patients are randomly 
assigned to treatments, whereas patients in the marker-negative 
group are assigned to control or standard-of-care treatment (Fig-
ure 6). The study is powered to detect treatment difference only in 
the marker-positive group. However, samples are collected from 
all the subjects to help testing for additional markers in the future.  

As a summary of  the above classical designs we reviewed, Table 1 
lists relative merits and limitations of  each design.

Adaptive Designs

According to the NIH Office of  Budget, the investment in phar-
maceutical research and development has more than doubled in 
the last two decades. However, the success rate for new drug ap-

Figure 2. Biomarker Stratified Design.
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Figure 3. Test Overall Difference Followed by Subgroup.
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Figure 4. Test Subgroup Followed by the Overall Population.
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Figure 5. Marker-based Strategy Design.
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plications (NDAs) remains low. As reported by the U.S. Govern-
ment Accountability Office (GAO), the approval rate for NDAs 
submitted to the FDA in 2009 is only about 40%. Reasons for this 
include [36]: (i) a diminished margin for improvement has esca-
lated the level of  difficulty in proving drug benefits; (ii) genomics 
and other new science have not yet reached their full potential; (iii) 
mergers and other business arrangements have decreased candi-
dates; (iv) easy targets are more difficult to study; (v) rapidly es-
calating costs and complexity have decreased willingness to bring 
many candidates forward into the clinic. United States Food and 
Drug Administration (FDA) hosted a “Critical Path Initiative” to 
identify key scientific challenges underlying the medical product 
pipeline problems and released a Critical Path Opportunities List 
in 2006 that encouraged advancement of  innovative clinical trial 
designs especially learning from prior experience and ongoing ac-
cumulated data. The innovation implies the use of  adaptive de-
sign methods and the potential use of  Bayesian approach. Chow 
et al. (2005) [8] define adaptive design as “a design that allows ad-
aptations or modifications to aspects of  the trial after its initiation 
without undermining the validity and integrity of  the trial”. The 
PhRMA Working Group refers an adaptive design as a clinical 
study design that uses accumulating data to direct modification of  
aspects of  the study as it continues, without undermining the va-
lidity and integrity of  the trial [12]. Nowadays, the application of  
adaptive design methods in clinical trials has become very popular 
due to its flexibility and efficiency. 

Some of  the commonly used prospective pre-specified adaptive 
designs include (i) Group sequential design, (ii) sample size re-
estimation design, (iii) adaptive seamless design, (iv) drop-the-los-
er design, (v) adaptive randomization design, (vi) adaptive dose-
finding design, (vii) biomarker-adaptive design, (viii) adaptive 
treatment-switching design (ix) hypothesis-adaptive design, (x) 
any combinations of  the above. (Chow and Chang, 2011) [9]. In 
this section, we will review adaptive designs related to biomarker 
selection and enrichment. 

Adaptive Accrual Design

If  biomarker-based subgroups are predefined, but with uncer-
tainty on the best possible endpoint and population, an adaptive 
accrual design could be considered with interim analysis that may 
lead to modify the patient population to accrual.

Chang (2006, 2007) [4, 5] proposed an adaptive accrual design 
which is called a “biomarker-adaptive winner design” for oncol-
ogy trials. In this design, the recruitment starts with overall patient 
population, at interim analysis, select either biomarker-positive or 
overall population as the winner population and continue to re-
cruit the winner population at the second stage of  the trial. In the 
final analysis, the hypothesis test will be conducted on the winner 
population. The winner can be determined based on effect sizes, 
the interim p-values, conditional powers, or utility functions of  
the population group (Figure 7).

Wang et al., (2007) [33] proposed a phase III design comparing an 
experimental treatment with a control treatment that begins with 
accruing both positive and negative biomarker status patients. An 
interim futility analysis would be performed, and based on results 
of  the interim analysis it is decided to either continue the study 
in all patients or only the biomarker positive patients. Specifical-
ly, the trial follows the following scheme: begin with accrual to 
both marker-defined subgroups; an interim analysis is performed 
to evaluate the test treatment in the biomarker-negative patients. 
If  the interim analysis indicates that confirming the effectiveness 
of  the test treatment for the biomarker-negative patients is fu-
tile, then the accrual of  biomarker-negative patients is halted and 
the final analysis is restricted to evaluating the test treatment for 
the biomarker-positive patients. Otherwise, accrual of  biomarker-
negative and biomarker-positive patients continues to the target 
sample size until the end of  the trial. At that time, the test treat-
ment is compared to the standard treatment for the overall popu-
lation and for biomarker-positive patients (Figure 8).

Table 1. Summary of  Reviewed Classical Designs.

Design Description Merits Limitations

Biomarker-enrich-
ment Design

Enroll only biomarker positive 
patients

Potential of  smaller sample size; 
higher probability of  trial suc-

cess; enhancement of  benefit-risk 
relationship 

Restricted enrollment provide 
no information for biomarker 

negative patients

Biomarker Strati-
fied Design

Only randomize patients with 
a valid marker result, randomi-
zation stratified  by biomarker 

status

Provide overall risk-benefit as-
sessment in general population; 
prospective marker validation 

requires rapid turnaround 
times for the assay results in 
order to randomize patients

Sequential Testing 
Strategy Design

Classical randomized clinical 
trial design for all comers or 

unselected patients

Provide overall risk-benefit as-
sessment in general population; 

potential of  higher probability of  
trial success

possibility of  confounding as 
randomization is not stratified 

by biomarker status

Marker-based Strat-
egy Design

Patients are randomized to 
biomarker based arm vs. non-

biomarker based arm

Can be used to assess predictive 
value of  biomarker

redundancy; inability to 
examine treatment effect in 
biomarker negative patients

Hybrid Design
Similar to biomarker-enrich-
ment design but also enroll 
biomarker negative patients

Potential of  higher probability 
of  trial success; enhancement of  

benefit-risk relationship

Inability to examine treatment 
effect in biomarker negative 

patients
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Jenkins et al. (2011) [17] proposed a similar design but with more 
flexibility. It allows the trial to test treatment effect in the overall 
population, subgroup population or the co-primary populations 
at the final analysis based on the results from interim analysis. 
Besides, the decision to extend to the second stage is based on in-
termediate or surrogate endpoint correlated to the final endpoint 
(Figure 9). In this design, a combination of  test statistics for the 
final endpoint from each stage is used for hypothesis testing. The 
patients who start in the first stage will remain in the study and 
would be monitored for their long term (final) endpoint.

Biomarker-Adaptive Threshold Design

Biomarker development and validation is usually very expensive 
and time consuming.  Often times by the time of  the start of  late 
phase clinical trials, a reliable biomarker, as well as its threshold, 
for identifying patients sensitive to an experimental treatment is 
not known. 

When the marker is known but the threshold or the cut point 
for defining a positive or negative biomarker status is not clear, a 
biomarker-adaptive threshold design can be considered [18]. The 
biomarker-adaptive threshold design combines the test of  overall 
treatment effect with the establishment and validation of  a cut 
point for a pre-specified biomarker which identifies a biomarker-
based subgroup believed to be most sensitive to the experimental 
treatment. This design potentially provides substantial gain in ef-
ficiency. 

Specifically, the main purpose of  the biomarker-adaptive thresh-
old design is to identify and validate a cut-off  point for a pre-

specified biomarker, and to compare the clinical outcome be-
tween experimental and control treatments for all patients and for 
the patients identified as biomarker positive in a single study. The 
procedure provides a prospective statistical test of  the hypotheses 
that the experimental treatment is beneficial for the entire patient 
population or that the experimental treatment is beneficial for a 
subgroup defined by the biomarker, and provides an estimate of  
the optimal biomarker cut-off  point.

The statistical hypothesis test can be carried out by splitting the 
overall type I error rate α. First, compare the treatment response 
on the overall population at α1 and if  not significant then perform 
the second test at α- α1.  For example, if  the null hypothesis of  
no benefit in overall population is rejected at a desired significance 
level of  say 0.04 then the testing is stopped. Otherwise, the testing 
is carried out at 0.01 to test the hypothesis of  no benefit in identi-
fied biomarker-based subpopulation. This strategy controls over-
all alpha below the 0.05 level. The advantage of  this procedure is 
its simplicity and that it explicitly separates the effect of  the test 
treatment in the broad population from the subgroup specifica-
tion. However, it takes a conservative approach in adjusting for 
multiplicity in combining the overall and subgroup analyses. Oth-
er strategies of  combining the two statistical tests for overall and 
subgroup patients involve consideration of  the correlation struc-
ture of  the two test statistics. A point estimate and a confidence 
interval for the cut-off  value could be estimated by a bootstrap 
re-sampling approach.

Adaptive Signature Design

The adaptive signature design [11] is a design proposed to select 

Figure 7. Biomarker-Adaptive Winner Design [4, 5]
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Figure 8. Adaptive Accrual Design [33].
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the subgroup using a large number of  potential biomarkers.  This 
design is appropriate when both the potential biomarkers and the 
cut off  are unknown however there is some evidence that the 
targeted therapy may work in some of  the shortlisted biomarkers. 

It combines a definitive test for treatment effect in entire patient 
population with identification and validation of  a biomarker sig-
nature for the subgroup sensitive patient population. There are 
three elements in this design: (a) trial powered to detect the over-
all treatment effect at the end of  the trial; (b) identification of  
the subgroup of  patients who are likely to benefit to the targeted 
therapy at the first stage of  the trial; (c) statistical hypothesis test 
to detect the treatment difference in sensitive patient population 
based only the subgroup of  patients randomized in the latter half  
of  the trial. These elements are pre-specified prospectively.

Statistical tests should be conducted appropriately in this design 
to account for multiplicity. A proposed strategy is as follows: test 
the initial null hypothesis of  no treatment benefit in overall popu-
lation at a slightly lower significance level than the overall alpha of  
0.05 (for example, 0.04). If  the initial null hypothesis is rejected at 
the lower significance level, then the targeted therapy is declared 
superior than the control treatment for the overall population. 
The hypothesis testing and analysis is complete at this stage.  If  
the first hypothesis is not rejected, then the signature component 
of  the design is used to select a potentially promising biomarker 
subgroup.  It is done by the following steps:  split the study popu-
lation into a training sub-sample and a validation sub-sample of  
patients. Training sub-sample is used to develop a model to pre-
dict the treatment difference between targeted therapy and con-
trol as a function of  baseline covariates. The developed model 
is then applied to validation sub-sample to obtain the prediction 
for each subject in this sample. A predicted score is calculated to 
classify the subject as sensitive or non-sensitive. The subgroup is 
selected using a pre-specified cut-off  for this predicted score. The 
second hypothesis test is conducted in this sensitive subgroup to 
see the benefit of  the targeted therapy against the control.  This 
test is conducted at a much lower significance (for example, 0.01).    

According to Freidlin and Simon (2009) [11], this design may be 
ideal to use for Phase II clinical trials for developing signatures 
to identify patients who respond better to targeted therapies. The 
advantage of  this design is its ability to de-risk losing the label of  
broader population. However, since only half  of  the patients are 
used for development or validation, and with the large number of  
potential biomarkers for consideration, a large sample size may be 
need to adequately power the trial.

Cross-Validated Adaptive Signature Design

Cross-validated adaptive signature design (Freidlin et al, 2010) 
[11] is an extension of  the adaptive signature design, which al-
lows use of  entire study population for signature development 
and validation.

Similar to the adaptive signature design, the initial null hypothesis 
is to test the benefit of  the targeted therapy against the control 
is conducted in the overall population which is conducted at a 
slightly lower significance level α1 than the overall alpha α. The 
sensitive subset is determined by developing the classifier using 
the full population.  It is done by the following steps.

1. test the initial null hypothesis of  no treatment benefit in the 
overall population at α1, which is a slightly lower significance 
level than the overall α. If  this hypothesis is rejected, then the 
targeted therapy is declared superior than the control treat-
ment for the overall population and analysis is completed. If  
the first hypothesis is not rejected; then carrying out the fol-
lowing steps for signature development and validation. 

2. Split study population into “k” sub-samples. 
3. One of  the “k” sub-samples is omitted to form a training 

sub-sample.  Similar to the adaptive signature design, develop 
a model to predict the treatment difference between targeted 
therapy and control as a function of  baseline covariates using 
training sub-sample. Apply the developed model to each sub-
ject not in this training sub-sample so as to classify patients as 
sensitive or non- sensitive. 

4. Repeat the same process leaving out a different sample from 

 Figure 9. Adaptive Accrual Design [17].
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on basis of  
stage 1 and 

stage 2

Yes

Yes

Yes

No

No
No Stage 2

No
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the “k” sub-samples to form training sub-sample.  After “k” 
iterations, every patient in the trial will be classified as sensi-
tive or non-sensitive.  

5. Compare the treatment difference within the subgroup of  
patients classified as sensitive using a test statistic (T).   Gen-
erate the null distribution of  T by permuting the two treat-
ments and repeating the entire “k” iterations of  the cross-
validation process.  Perform the test at α-α1.  If  the test is 
rejected, then the superiority is claimed for the targeted ther-
apy in the sensitive subgroup. 

The cross-validation approach can considerably enhance the per-
formance of  the adaptive signature design as it permits the maxi-
mization of  information contributing to the development of  the 
signature, particularly useful in the high-dimensional data setting 
where the sample size is limited. Cross-validation also maximizes 
the size of  the sensitive patient subset used to validate the signa-
ture. One drawback is the fact that the signature for classifying 
sensitive patients in each subsample might not be the same and 
thus can cause difficulty in interpreting the results if  a significant 
treatment effect is identified in the sensitive subgroup.

Bayesian Adaptive Randomization Enrichment Design

Zhou et al (2008) [37] proposed an adaptive randomization meth-
od that allows the evaluation of  treatments and biomarkers simul-
taneously. Using a Bayesian hierarchical framework, more patients 
are provided with potentially more effective treatments according 
to the patients’ marker profiles. Bayesian adaptive design can help 
to refine the estimation and randomization of  the patients as the 
trial progresses. 

The BAR enrichment design has been successfully implemented 

in a phase II Biomarker-integrated approaches of  targeted ther-
apy of  lung cancer elimination (BATTLE) trial. The BATTLE 
project consists of  one umbrella trial and four parallel phase II 
studies with biomarker-based targeted therapies in patients with 
advanced NSCLC previously treated with chemotherapy but sub-
sequently failed. The main objective of  the study was to estimate 
and test the disease control rate at 8 weeks for each treatment 
given patients’ tumor biomarker profiles. The Bayesian probit 
model was used to characterize the disease control rate for each 
treatment by marker subgroup with adaptive randomization. 

One obvious limitation of  the BAR design is adaptive randomiza-
tion requires a quick turnaround time to learn from the interim 
data and adjust the randomization rate. As a result, the BAR de-
sign is applicable only for trials when the endpoint can be assessed 
in a relative short period of  time. 

Bayesian statistical methods are being used increasingly in clinical 
research because the Bayesian approach is ideally suited to adapt-
ing to information that accrues during a trial, potentially allowing 
for smaller more informative trials and for patients to receive bet-
ter treatment. Bayesian design can provide an advantage over the 
non-Bayesian if  certain conditions exist and have been the topic 
of  a recent FDA guidance publication (2012). However, Korn and 
Freidlin (2011) [19] conducted simulations and pointed out that 
the Bayesian adaptive randomization designs are not necessarily 
more efficient than non-Bayesian designs. As for choosing be-
forehand the type of  analysis to be used Bayesian or non-Bayes-
ian, careful consideration based on the research purpose and the 
prior information for related studies is recommended.

We summarize the adaptive designs we reviewed above in the Ta-
ble 2.

Table 2. Summary of  Reviewed Adaptive Designs.

Design When to use Merits Limitations

Adaptive Accrual 
Design

Used when biomarker-based 
subgroups could be predefined, 
but with uncertainty on the best 

possible endpoint and population. 

allows interim modification of  patient 
population to accrual, higher prob-

ability of  trial success, enhancement of  
benefit-risk relationship

increased complexity to 
avoid type I error inflation 
due to interim adaptations 

and multiplicity

Biomarker-Adaptive 
Threshold Design

Use when the threshold of  
biomarker for defining a positive 
or negative biomarker status is 

not clear. 

combines test of  overall treatment ef-
fect with the establishment and valida-
tion of  a cut point for a pre-specified 

biomarker; increased efficiency

Increase complexity to 
avoid type I error inflation 

due to multiplicity

Adaptive Signature 
Design

Used when both the potential 
biomarkers and the cut off  are 

unknown 

combines test of  overall treatment 
effect with identification and validation 
of  a biomarker signature for sensitive 
patient population; ability to de-risk 

losing the label of  broader population. 

Increased complexity to 
avoid type I error inflation 

due to multiplicity

large sample size may need 
as only half  patients used 
for development or valida-
tion of  signature from a 

large number of  potential 
biomarkers

Cross-Validated 
Adaptive Signature 

Design

Used when both the potential 
biomarkers and the cut off  are 

unknown

an cross-validation extension of  adap-
tive signature design

use entire study population for signa-
ture development and validation

enhanced efficiency 

Increased complexity to 
avoid type I error inflation 

due to multiplicity 
difficulty in interpreting the 
significant results in sensi-

tive subgroup

Bayesian Adaptive 
Randomization En-

richment Design

Used when performing adap-
tive randomization according to 
patients biomarker status and 

when endpoint can be assess in a 
relative short period of  time

refines the estimation and randomiza-
tion of  the patients as trial progresses

Increased complexity
requires a quick turnaround 

time 
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Discussion

In this paper, we gave an overview of  biomarker-driven clinical 
trial designs utilizing predictive biomarker enrichment strategies 
that are growing in the statistical literature, with a focus on bio-
marker-driven adaptive designs so as to increase the power and 
efficiency to detect an effective therapy with regard to a predictive 
biomarker in clinical trial.

There are a number of  issues one needs to consider before de-
signing a trial with a predictive biomarker component [15]. First, 
we need to evaluate the strength of  preclinical evidence for a po-
tential predictive biomarker. If  there is compelling preliminary ev-
idence that the experimental therapy does not provide benefit to 
all the patients, and the benefit is restricted to a subset of  patients 
expressing a molecular or genetic value, an enrichment strategy 
may be adopted. Otherwise, an unselected or all-comers strategy 
may be wise so that there is no missed opportunity. Second, we 
need to evaluate whether the prevalence of  the biomarker positive 
group is high, moderate or low. If  the prevalence is high, popula-
tion enrichment may be redundant and a traditional design could 
render the greatest commercial value and market reach. Thirdly, as 
indicated by the FDA, the accuracy of  the measurements used to 
identify the enrichment population and the sensitivity and speci-
ficity of  the enrichment criterion in distinguishing responders 
and non-responders are also critical issues. When the assay is not 
100% perfect to dichotomize patients to biomarker positive and 
negative groups, the efficiency of  targeted clinical trials will be 
affected in a negative way. Let λsens denote the sensitivity of  the as-
say for diagnosing marker+ patients and let λsens denote the corre-
sponding specificity, then the treatment effect for the enrichment 
study will be diluted by:

λsens (1-γ)/{(1-λspec) γ + λsens(1-γ)}

If  2nT denote the number of  patients randomized to the targeted 
trial, then 2nT/{(1-λspec) γ + λsens(1-γ)} is the expected number of  
screened patients to enroll 2nT randomized patients.

Thus, the assay specificity is critical to determine the efficiency 
of  targeted clinical trials with regard to required number of  rand-
omized patients while the assay sensitivity played a vital role with 
regards to required number of  screened patients.   

An accurate, reproducible and adequately validated assay is essen-
tial for establishing desired therapeutic activity and clinical valida-
tion of  the biomarker (usually realized by a companion diagnostic 
kit from a central lab) in a prospective manner.  In addition, the 
feasibility and timing to obtain a biopsy (de-novo or archived) 
or serum sample at baseline prior to randomization determines 
whether the biomarker can be prospectively validated.

Biomarkers are becoming increasingly important for streamlin-
ing drug discovery and development in the new era of  precision 
medicine. Nowadays, many biomarkers are being used in phase 
III clinical studies and have helped in bringing forward effec-
tive treatments to marker-defined patient populations in a timely 
manner. A few examples include: use of  HER2 expression in the 
study of  Lapatinib plus letrozole for metastatic breast cancer; use 
of  KRAS mutation status in the study of  cetuximab plus chemo-

therapy for stage III colon cancer, use of  EGFR expression in 
the study of  erlotinib for metastatlic non-small cell lung cancer.

In addition to the case of  predictive biomarker for identifying 
sensitive patient population, case of  biomarkers that relate to ear-
ly treatment selection (Wang et al., 2015) [32] is also an important 
research area but not covered in our paper.
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