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The primary objectives of  prolonging survival of  transplanted or-
gans and their recipients are compromised by cell-mediated and 
antibody-mediated rejections, infections, side-effects of  immuno-
suppressive agents, malignancies and no-adherence [1]. Strategies 
to eliminate the need of  long-term immunosuppressive agents 
and induction of  tolerance have been the goal of  research for 60 
years. Transplantation tolerance is defined as induced modifica-
tion of  the host immune system which leads to indefinite, drug-
free, transplant survival with maintenance of  full incompetence 
[2].

Peter Medawar et al., pioneered in inducing tolerance in experi-
mental animals 60 years ago. They demonstrated that prenatal or 
neonatal mice inoculated with allogeneic splenocytes were tol-
erant as adults to skin grafts from same donor strains resulting 
in drug-free indefinite graft survival, devoid of  complications, 
including chronic rejection [3]. Since then several strategies of  
tolerance including heart, liver, kidney, bone marrow transplants 
have been developed in laboratory rodent models [4]. In 1999, 
Spitzer et al., demonstrated successful induction of  tolerance in 
human renal transplant recipients through development of  mixed 
lymphohaemopoietic chimerism and observed sustained allograft 
tolerance [5].

Tolerance of  one’s own tissues and elimination of  autoimmunity 
are achieved by central and peripheral mechanisms. Central toler-
ance is generated within the thymus where immature autoreactive 
T cells with a high affinity for self-major histocompatibility com-
plex molecules are subjected to apoptosis, a process referred to as 
negative selection or deletional tolerance [6]. The peripheral toler-
ance involves extrathymic mechanisms, whereby the activated T 
cells, which have escaped negative selection and emigrated from 
thymus, are suppressed by specialised T cells, termed as regulatory 
T cells (Tregs) [7]. Combination of  both central and peripheral 
mechanisms are essential for the elimination of  autoreactive cells 
and induction of  self-tolerance.

Thymic-derived, regulatory Treg cells represent a subset of  CD4+ 

T cells (Foxp3+CD4+CD25+ regulatory T cells), which suppress 
unwanted responses against self-antigens and prevent autoim-
munity. Tregs can suppress a whole range of  immune cells includ-
ing B cells, NK cells, CD4+ or CD8+ T cells, and both monocytes 
and dendritic cells. Emerging evidence suggest that the presence 
of  regulatory B cells (Breg) in the spleen and blood of  patients 
that spontaneously develop graft tolerance, bearing the pheno-
type CD24intCD38+CD27+IgD-IgM+/low, can transfer donor-spe-
cific tolerance via IL-10 and TGF-beta1-dependent mechanisms 
and to suppress in vitro TNF-alpha secretion [8, 9].

Based upon the experience of  animal models and human studies, 
in transplant recipients, central deletional tolerance provides the 
most robust and long-lasting state of  unresponsiveness. Mixed 
haemopoietic chimerism and donor thymic transplantation are 
two strategies aimed at harnessing the potential of  central toler-
ance in humans. Co-stimulation blockade using cytotoxic T cell 
lymphocyte associated antigen-4 immunoglobulin (CTLA4Ig)
which blocks the CD28:CD80/86 costimulatory pathway has 
been used to develop peripheral tolerance.

Mixed haemopoietic chimerism strategy involves a bone marrow 
or stem cell transplant in addition to the organ transplant. His-
torically, the experimental transplant recipients were subjected to 
whole body irradiation to eliminate mature alloreactive T cells. 
This was followed by transfusion of  donor haemopoietic stem 
cells. The donor alloreactive T cells in the recipient were subse-
quently eliminated by the thymus leaving behind the newly de-
veloped T-cell repertoire of  mixed chimeras tolerant toward the 
donor organs [10].

Subsequently, a T-cell depleting and non-myeloablative condi-
tioning regimens were introduced for induction of  mixed chimer-
ism, which included limited body irradiation, splenectomy, anti-
thymocyte globulin, donor bone marrow cell infusion and course 
of  cyclosporine [11]. To avoid the risk of  non-myeloablative ir-
radiation, less toxic protocols of  co-stimulation blockade led to 
mixed chimerism animals. The most frequently used co-stimula-
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tion blockers interfere with CD28/CTLA4-CD80/CD86 or the 
CD40L(CD154)-CD40 pathways [12, 13]. Following administra-
tion of  anti-CD154 and CTLA4Ig leads to a significant increase 
of  Foxp3+ regulatory T cells in tolerant animals [14].

To enhance central deletional tolerance, co-transplant of  vascu-
larised donor thymus at the time of  organ transplantation were 
performed using composite organs called “thymokidneys” and 
“thymohearts” in thymectomised animals, which showed pro-
longed allograft survival and diminished development of  chronic 
vascular lesions [15, 16].

Nobel laureate Rolf  Zinkernagel and Starzl had proposed that 
all outcomes of  organ or bone marrow transplantation are de-
termined by the balance between the number of  leukocytes that 
travel to lymphoid organs and the number of  donor-specific T 
cells produced at those sites [17]. Recipients of  organ allografts 
usually receive large doses of  immunosuppressive therapy dur-
ing the early period of  maximal leukocyte migration. These large 
doses may erode the mechanism of  tolerance by clonal exhaus-
tion–deletion [18].

Currently available immunosuppressive agents impact Treg cells 
in the alloimmune milleu with both beneficial and deleterious in-
teractions to the allograft. Basiliximab, an IL-2 receptor blocker 
decreases Tregs, while lymphocyte depleting agents such as anti-
thymocyte globulin and alemtuzumab increase Tregs. Calcineurin 
inhibitors, a mainstay maintenance immunosuppression since the 
mid-1980s, suppresses Tregs, while mammalian target of  rapamy-
cin inhibitors expands Tregs [19, 20].

Significant progress has been made in the development of  bi-
omarkers those can uncover mechanisms and act as tools for 
identifying and monitoring recipients who develop a state of  op-
erational tolerance, during accidental immunosuppression with-
drawal secondary to problems of  over-immunosuppression  or 
toxicity [21]. Operationally tolerant kidney, liver and heart allo-
graft recipients have been reported [22]. In addition to Tregs, oth-
er immune cells, such as dendritic cells, monocyte/macrophages 
or natural killer cells, have been described as part of  the process 
operational tolerance [23-25].

A joint meeting organized by the European Society of  Organ 
Transplantation and The Transplantation Society for basic sci-
ence research was organized in Paris in 2013, recommended to 
establish a registry of  results of  patients enrolled in tolerance 
trials,establish protocols, biomarkers, include children 12 years 
and older and establish a task force to manage the logistics of  the 
trials [26, 27].

In conclusion, induction of  transplant tolerance and acceptance 
of  organ without the perils of  immunosuppression remain the 
holy grail, which depends on successful implementation of  tol-
erance strategies in nonhuman primates. Although costimulatory 
blockade and mixed chimerism have been successful in inducing 
tolerance in nonhuman primates, the transfer of  tolerogenic cell 
populations such as Tregs and mesenchymal stem cells are impor-
tant advances, which are under investigation [28].
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