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Stem cells, including mesenchymal stem cells (MSCs) and pluri-
potent stem cells (PSCs), have shown great potential for various 
biomedical applications including drug discovery, disease mod-
eling, and tissue engineering [1-4]. Especially, the discovery of  
induced pluripotent stem cells (iPSCs) with similar characteristics 
to embryonic stem cells (ESCs) opens a new era for stem cell re-
search and transplantations [5]. Bioprocess engineering provides 
a platform to generate a controlled microenvironment that could 
potentially recreate a stem cell niche in view of  promoting stem 
cell proliferation or lineage-specific differentiation.

A bioprocess engineering strategy, through the use of  well-con-
trolled bioreactors, aims at achieving the large scale production 
of  stem cells, improving their biological properties, and ensuring 
the safety in clinical use following the guidelines of  current Good 
Manufacturing Practices (cGMP) [6,7]. For instance, microcarrier- 
based bioreactors enable easy scale up for anchorage-dependent 
stem cells, demonstrating high reproducibility on regulation of  
cellular behaviors together with the compliance under cGMP. 
Microcarriershave been investigated for stem cell expansion and 
differentiation in stirred tank bioreactors and rotating wall biore-
actors, including MSCs and PSCs as well as differentiated tissue-
specific cells (e.g. osteoblasts, neurons,cardiomyocytes etc.)[8-13]. 
As for custom-made biomaterials,the accurate biochemical and 
biomechanical characterization of  the microcarriers (i.e. surface 
composition and modulus) will help to fully exploit their potential 
in regulating the stem cell fate decision. For instance, it has been 
shown that microcarrier surface properties modulated MSC adhe-
sion and cytoskeleton, which in turn regulated chondrogenic dif-
ferentiation [14]. Another suspension culture organization in bio-
reactors is the self-assembled aggregates, which has been shown 

recently for both PSCs and MSCs [6,15]. This 3-D organization 
promotes cell-cell adhesion and the secretion of  growth factors, 
allowing large scale expansion as well as enhanced therapeutic po-
tential. Most importantly, suspension culture in bioreactors with
either microcarriers or aggregates enables the process integration 
of  iPSC reprogramming, stem cell self-re newal, and the lineage-
specific differentiation [16,17].

Bioreactors promote efficient mass transfer and enable the con-
trol of  nutrient feeding mode to regulate cell metabolism [18]. For 
instance, glucose and oxygen metabolisms play a key role in MSC 
and PSC expansion and differentiation [19]. The efficient expan-
sion of  stem cells relies on glycolysis, while during differentiation
stem cells generally switch their metabolism to oxidative phos-
phorylation (e.g. cardiomyocytes derived from PSCs) [20-22]. As a 
consequence, the requirements for glucose and oxygen vary upon 
different phases of  stem cell production. Accurate understanding
of  stem cell metabolism is critical for the rational design of  cul-
ture parameters such as feeding regime in bioreactors for efficient 
integrated expansion and differentiation at large scale. In the same 
vein, the generation of  gradients of  cytokines and growth fac-
tors in the bioreactors enables the design of  adequate niches to 
promote efficient stem cell differentiation, as shown in mesoder-
mal lineage commitment and the regulation of  ESC self-renewal 
[23,24].

Besides the improved mass transfer and diffusion, bioreactors 
also enable the control of  stem cells’ exposure to mechanical 
forces, providing additional signaling for differentiation or sus-
tainment of  the stem cell properties [25]. For instance, the activa-
tion of  Wnt signaling for MSC osteogenic differentiation or the 
sustained self-renewal of  ESCs and alternatively their commit-
ment is regulated by mechanical force [26-28]. The mechanical 
stress has also been shown to induce autocrine/paracrine signal-
ing of  transforming growth factor (TGF)-β superfamily and ac-
tivate Smad2/3 pathway to suppress spontaneous differentiation 
of  human PSCs [29,30]. These findings underscore the impor-
tance of  reciprocal interactions of  autocrine/paracrine signals 
and mechanical force in 3-D cellular organizations during stem 
cell self-renewal and lineage commitment.

Together, this editorial indicates that rational bioprocess engi-
neering strategies applied to stem cell cultivation in bioreactors 
constitutes the ideal way to monitor the microenvironment of  
stem cells. Accurate microcarrier characterization, the controlled 
feeding mode, and the magnitude of  applied mechanical force 
should lead to the improvement in stem cell expansion and differ-
entiation ex vivo that ultimately meet the clinical demand with the 
large number of  cells as well as the safety considerations.
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