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Introduction

Diabetic retinopathy (DR) is a complication of  the eye due to 
prolonged diabetes. In the United States, the prevalence of  DR 
in a diabetic age group of  18 or older is 1 in 300 [1]. Glycemic 
control, diabetic duration, blood pressure control, blood lipids, 
among others are major determinants in the development and 
severity of  DR [2-5]. Nonproliferative diabetic retinopathy 
(NPDR) is characterized by loss of  capillaries, pericyte dropout, 
and formation of  microaneurysms [6-9]. NPDR progression to 
proliferative stage (PDR) is characterized by neovascularization 
and excessive angiogenesis [10-12] which causes swelling of  
capillaries and leakage of  fluids on aqueous and vitreous humors, 
as well as retinal detachment [13], eventually leading to partial or 

complete vision loss.

There are various growth factors associated with diabetic 
retinopathy [14]. One of  the widely investigated known growth 
factors is Vascular Endothelial Growth Factor (VEGF). VEGF 
is a group of  glycoproteins existing in many isoforms [15]. 
VEGF/VEGF-A (a 45KDa glycoprotein) is known to promote 
neovascularization and angiogenesis [16, 17]. VEGF is secreted 
by retinal pigment epithelial cells, endothelial cells, pericytes, 
ganglion cells, choroidal fibroblast cells, Müller cells and others in 
the retina [18-24]. The VEGF levels in DR may partly be elevated 
due to oxidative stress, glycation products [25], and hypoxia.

Müller cells are one of  the three types of  glial cells in the retina.  
They span radially along the thickness of  the retina and play a 
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key role in maintaining retinal homeostasis [26]. Previous studies 
suggest that VEGF derived from Müller cells promote retinal 
vascularization in DR [27, 28]. The objective of  this study is 
to investigate how high glucose and glucose deprivation affect 
human and rat Müller cell viability and VEGF secretion.

Material and Methods

Cell Culture

Spontaneously immortalized human Müller cells (MIO-M1) 
were a gift from Dr. Astrid Limb (University College, London, 
UK). Cells were seeded into T25 flasks and maintained at 37°C 
+ 5% CO2 in Dulbecco’s Minimum Essential Medium (DMEM) 
containing 4.5g/L glucose and 10% fetal bovine serum (FBS) 
(growth medium) until confluent. SV40 transformed rat Müller 
cells (rMC-1) were obtained from Dr. Vijay Sarthy (Northwestern 
University, Chicago, IL, USA). The cells were seeded into T75 
flasks and maintained at 37°C + 5% CO2 in DMEM containing 1 
g/L glucose and 10% fetal bovine serum (FBS) (growth medium) 
until confluent.

Glucose Treatment

In a 24 well plate, 20,000 MIO-M1/well or 23,000 rMC-1/well (T0) 
were treated without glucose (0mM), normal glucose (5.5mM) or 
high glucose (30mM) in triplicates for 24 hours. Different glucose 
concentrations were prepared by adding D-Glucose to serum-
free and glucose-free DMEM. After 24 hour treatment, the cell 
medium was collected from each well and was stored at -20°C (for 
performing ELISA later). All experiments were repeated three or 
more times with similar results.

Trypan Blue Dye Exclusion Method

Cells were collected at T0 and again after 24 hours as described 
above. The cells were diluted 1:1 using Trypan Blue (Corning, 

Catalog number: 25-900 Cl) and viable cells were counted using a 
Neubauer Hemocytometer.

hVEGF Enzyme Linked Immunosorbent Essay (ELISA)

ELISA was performed on cell medium for human VEGF 
according to manufacturer instructions (CAT# DVE00; R&D 
Systems) and analyzed using a DYNEX MRXII plate reader 
equipped with Revelation software or BioRad microplate reader 
with Manager Software. Data was quantified in comparison to 
VEGF standards.

Statistical Analysis

GraphPad Prism Software (Version 6.07) was used to perform 
statistical analysis. One-way ANOVA was used to determine 
differences between treatment groups and Tukey’s Multiple 
Comparison Post-hoc test was used to compare difference 
between two groups. P≤0.05 was considered to be statistically 
significant. All results were collected in triplicates (except for 
5.5mM MIO-M1 n=2) and all data are expressed as mean ± SEM.

Results

Concentration dependent change in Cell Viability

Treatment with different glucose concentrations resulted in a 
significant change in cell confluence and cell number (Figure 
1 and 2). MIO-M1 were plated at 20,000 cells/well and after 
24 hour treatment, the number of  cells in 5.5mM and 30mM 
increased by 11% and 62% respectively (Figure 2A). In contrast, 
the number of  cells in 0mM decreased by 20%. (Figure 2A).  
Results from one-way ANOVA indicate a significant effect of  
glucose concentration on cell number (P=0.009). rMC-1 were 
plated at 23,000 cells/well and after treatment for 24 hours, the 
number of  cells in 5.5mM and 30mM increased significantly by 
77% and 119% respectively (Figure 2B). However, the number of  

Figure 1: Effect of  Glucose on Müller Cells confluence: 
A.) Light microscope images of  MIO-M1 grown in T0 and 0, 5.5 and 30mM glucose for 24 hour. Images from cells in 

5.5mM and 30mM show increase in confluence than T0, and images from cells in 0mM show a large decrease in confluence. 
All images were taken at 100X magnification.

B.) Light microscope images of  rMC-1 grown in T0 and 0, 5.5 and 30mM glucose for 24 hour. Images from cells in 5.5mM 
and 30mM were highly confluent than T0, and comparatively cells in 0mM show large decrease in confluence. All images 

were taken at 100X magnification.
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cells in 0mM decreased by 11% (Figure 2B). Results from one-way 
ANOVA show the glucose treatment effect on cell number was 
significant (P=0.001). Both MIO-M1 and rMC-1 responded to 
glucose treatment in a similar manner: namely a notable decrease 
in cell viability when treated with 0mM glucose but a significant 
increase in cell number when treated with 5.5mM and 30mM over 
a 24 hour period.

Effect of  Glucose on VEGF levels in cell media (pgVEGF/
ml)

Glucose treatment (for a 24 hour period) resulted in a minimal 
change in VEGF concentration (pgVEGF/ml) in the cell 
medium. MIO-M1 cells treated with 0, 5.5 and 30mM glucose 
secreted 239, 163 and 202pgVEGF/ml in cell media (Figure 3A). 
Similarly, rMC-1 treated with 0, 5.5 and 30mM glucose had 49, 
44 and 53 pgVEGF/ml in cell media (Figure 3B). Results from 
One-way ANOVA show that the glucose treatment did not 

show a significant glucose effect on VEGF concentration in the 
condition media in both MIO-M1 (P=0.54) and rMC-1(P=0.38). 
However, it is noted that the VEGF concentration in MIO-M1cell 
media was about 3-5 times higher than VEGF concentration in 
the media of  rMC-1 suggesting that MIO-M1 cells synthesize and 
secrete a higher level of  VEGF than rMC-1 in culture.

Concentration dependent change in VEGF secretion 
(pgVEGF/cell)

The amount of  VEGF secreted per cell was calculated by dividing 
VEGF concentration in cell medium by the number of  cells in the 
1-ml culture well. In both MIO-M1 and rMC-1, a concentration 
dependent change in VEGF secretion (pgVEGF/cell) was 
observed in which an increase in glucose concentration resulted 
in a decrease in VEGF secretion. In both MIO-M1 and rMC-
1, the amount of  VEGF secreted per cell increased by 2-fold 
(100% increase) when glucose was changed from 5.5 to 0mM, 
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Figure 1B

Figure 2: Effect of  Glucose on Müller Cells Viability: 
A.) Concentration-dependent change in cell viability of  MIO-M1. MIO-M1 were plated at 20,000 per ml in a 24 well plate.  
After 24 hours of  glucose treatment, there were 15,926 cells in 0mM (no glucose), 22,222 cells in 5.5mM (normal glucose) 

and 32,592 cells in 30mM (high glucose). Results from One-way ANOVA was significant (F (2, 5) =34.71, P=0.001). A 
Tukey’s multiple comparison test was performed to compare pairwise mean differences (**P ≤ 0.05). 

B.) Concentration-dependent change in cell viability of  rMC-1. rMC-1 were plated at 23,000 per ml in a 24 well plate. After 
24 hours of  glucose treatment, there were 20,370 cells in 0mM (no glucose), 40,741 cells in 5.5mM (normal glucose), and 
50,370 cells in 30mM (high glucose). Results from One-way ANOVA was significant (F (2, 6) =11.24, P=0.009). A Tukey’s 

multiple comparison test was performed to compare pairwise mean differences (**P ≤ 0.05). 
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but decreased by about 17% in MIO-M1 and 11% in rMC-1 
respectively, when glucose was increased from 5.5 to 30mM. In 
MIO-M1 cells, increase in glucose concentration from 0mM to 
30mM resulted in a 2-fold reduction in VEGF secretion (from 
0.0150 to 0.0065 pgVEGF/cell) and a similar 2-fold reduction 
of  VEGF secretion was also observed when rMC-1 cells were 
subjected to a change in glucose concentration from 0mM to 
30mM (from 0.0024 to 0.0010 pgVEGF/cell. Results from 
one-way ANOVA show a significant glucose effect on VEGF 
secretion in rMC-1 cells only (P=0.01). However, the level of  
VEGF secretion (pgVEGF/cell) by MI0-M1 cells at 0, 5.5 and 
30mM glucose was about 5-7 fold higher than VEGF secretion 
by rMC-1 cells.

Discussion

The objective of  the present study is to investigate the effect of  
glucose on human and rat Müller cell viability and VEGF secretion. 
Compared to physiological glucose (5.5mM), high glucose 
(30mM) increase cell viability in both Müller cell types (Figures 
1 and 2). This is consistent with results of  others using primary 
rat Müller cells [29]. In another study, the density of  Müller cells 
in retina increased significantly in 4 week old diabetic rats [30]. It 
is possible that under high glucose conditions enhanced entry of  
calcium to Müller cell may activate a process that leads to increase 
in cell proliferation [31]. As Müller cells contribute significantly to 
VEGF in the retina, the increase in Müller cell number in response 
to high glucose suggests that Müller cell may play an important 
role in elevated VEGF level in the diabetic retina.

In the present study, we also observed that 0mM glucose 
significantly decreased cell viability. This is consistent with a 
report which shows that primary rat Müller Cells decreased cell 
viability when they are glucose deprived (0mM) [32]. It is possible 
that Müller cells are highly dependent on glucose availability thus 
the lack of  glucose may severely impact cell viability. Further 
experiment will be needed to clarify the effect of  glucose 
deprivation. The possible explanation for opposite observations 
is that decrease of  glucose from 5.5 to 0mM deprived the minimal 

sustainable level of  glucose resulting in a decrease in cell viability. 
However, an increase from 5.5mM to 30mM resulted in an excess 
of  glucose to a level to activate other mechanisms such as the 
entry of  calcium leading to cell proliferation.

When glucose concentration was increased from 0 to 30mM, 
there was a significant decrease in VEGF protein secretion 
(pgVEGF/cell, Figure 4). However, other studies show that high 
glucose increased VEGF expression at mRNA and protein levels 
in primary rat Müller cells [29, 33, 34] in a concentration and time 
dependent manner [35, 36]. It is not clear if  high glucose induces 
increase in expression of  VEGF protein which accumulates 
but not released by Müller cells. Additional experiments will be 
needed to clarify this point.

The observation that MIO-M1 in culture secreted 3-5 folds more 
VEGF than rMC-1 (Figures 3 and 4) may be merely be due to 
species differences (human vs rat) and protein expressions in 
different cell lines (such as method of  cell transformation).

In the present study, we did not measure the level of  cell apoptosis.  
It is important to point out that more apoptotic cells does NOT 
mean less cell viability. This is because non-viable cells (dead cells) 
are derived from different types of  cell death including type I 
(apoptosis), type II (autophagy), type III (necrosis) [37]along with 
contributions from various mechanisms of  caspase-independent 
cell death [38]. Thus it is not possible to measure cell viability 
based on information derived only from apoptosis because 
apoptosis constitutes just one of  many different types cell death 
already known to occur in-vitro or in-vivo. However, it is possible 
that increase of  viable cell number may be due to an increase in 
cell division induced by high glucose.

It is of  great interest to study the molecular mechanism involved 
in Müller cell response to high glucose treatment and glucose 
deprivation. Previous studies suggest that elevated levels of  
VEGF in Müller cells in various glucose conditions may be related 
to intracellular calcium, hypoxia inducible factor, ERK ½ pathway 
and others [33, 36, 39]. It is also not clear if  VEGF secretion plays 

Figure 3. VEGF secretion in cell medium for a 24 hour glucose treatment: After 24 hour glucose treatment the VEGF se-
creted in conditioned medium was measured for hVEGF using ELISA plate.

A. Concentration-dependent change in VEGF level in cell medium in MIO-M1: Cells in 0mM secreted 239pgVEGF/ml of  
VEGF, 162.5pgVEGF/ml in 5.5mM and 201.6pgVEGF/ml in 30mM. Results from One-way ANOVA was not significant (F 

(2, 5) =0.678, P=0.54).
B. Concentration-dependent change in VEGF level in cell medium in rMC-1: Cells in 0mM secreted 48.5pgVEGF/ml of  

VEGF, 44.16pgVEGF/ml in 5.5mM and 52.83pgVEGF/ml in 30mM. Results from One-way ANOVA was not significant (F 
(2, 6) =1.115, P=0.38).

100

200

300

400

V
E

G
F 

se
cr

et
ed

 (p
gV

E
G

F/
m

l)

0 mM
5.5 mM

30 mM

Glucose

MIO-M1

0 0

20

40

60

80

0 mM
5.5 mM

30 mM

Glucose

rMC-1

V
E

G
F 

se
cr

et
ed

 (p
gV

E
G

F/
m

l)

Figure 3BFigure 3A



Tsin AT et al., (2016) High Glucose and Glucose Deprivation Modulate Müller Cell Viability and VEGF Secretion. Int J Ophthalmol Eye Res. 4(2), 178-183.

182

 OPEN ACCESS                                                                                                                                                                                http://scidoc.org/IJOES.php

an essential role in the glucose induced changes in Müller cell 
viability observed in the present study. Nevertheless, Müller cell 
derived VEGF plays an important role in neovascularization and 
vascular damage in diabetic retinopathy. Therefore, further studies 
are required to understand the molecular action of  high glucose 
to increase Müller cell viability and inhibit VEGF secretion.
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