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Introduction 

Functional magnetic materials, such as transition metal oxides with 
spinel structure MFe2O4  (M=Mg, Mn, Fe, Co, Ni, Zn, etc.) are one 
family of  the most important materials in advanced technology 
[1,2]. As an important part of  nanomaterials, nanomagnetic mate-
rials have attracted considerable attention due to their utilizations 
in the magnetic field sensor, bio-sensors, magnetic-storage media, 
catalysis,optics, sensors and drug-delivery carriers, and so on [3-
9]. However, the magnetic properties of  nanoparticles strongly 
depend on the synthesis conditions, particle size, shape and com-
position. Therefore, the ability to manipulate the shape and size 
of  nanomaterials is crucial to determine their magnetic properties 

and achieve the scientific and technological needs. Hence, it is de-
sirable to develop strategies for morphology-controlled synthesis 
of  nanosized spinel ferrites. 

Currently, different morphologies of  spinel ferrites have been re-
ported, including nanospheres [9], nanorods [10,11], hollow tubes 
[12,13], spindle-shaped spinel [14] and nanowires [15,16]. There 
are few reports on porous sphere-shaped ferrites. Porous-struc-
tured ferrites should perform even more effectively in catalysis, 
adsorption and wave absorption because of  their porous frame-
work [17,18].

Among the family of  ferrite materials, magnesium ferrite (Mg-
Fe2O4) is one of  the most important ferrites. It has a cubic 
structure of  normal spinel-type and is a soft magnetic n-type 
semiconducting material, which finds a number of  applications 
in heterogeneous catalysis, adsorption, sensors, and in magnetic 
technologies [19]. To date, a variety of  synthetic approaches, in-
cluding solvothermal method [9], solid-state reaction [20,21] poly-
mer calcination approach [22], pulsed laser deposition technique 
[23] and co-precipitation method [24] have been reported to pre-
pare MgFe2O4 nanoparticles. However, these reports reveal that 
high temperature treatment, long time consuming, and complex 
procedures are generally required for effective synthesis of  such 
functional materials. Therefore, developing simpler and environ-
mentally benign methods is technically important and desired.

In this study, porous sphere-shaped MgFe2O4 particles were fabri-
cated using low-temperature hydrothermal method. Ethylene gly-
col (EG) and poly-ethylene glycol (PEG) were used as the solvent 
and so template, respectively. Magnesium chloride (MgCl2.6H2O) 
and ferric chloride (FeCl3.6H2O) were used as cation sources in 
the reaction system. The as-prepared products exhibited good 
magnetic properties at room temperature.
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Experimental

Materials and physical measurements

Magnesium chloride hexahydrate (MgCl2.6H2O, Merck ≥99%) 
ferric chloride hexahydrate (FeCl3.6H2O, Merck ≥99%) salts, so-
dium acetate trihydrate (CH3COONa.3H2O, ≥95%), Ethylene 
glycol (EG), PEG (Mn=4,000, Shanghai Chemical Regent Co., 
Ltd., China) and were used for the synthesis of  MgFe2O4 nano-
particles. All chemicals were analytical grade and used as received 
without further purification. The X-ray diffraction (XRD) pat-
terns of  the MgFe2O4 particles were obtained using an X’Pert 
PRO X-ray diffractometer (Model D8 Discover, Bruker) with 
CuKα radiation (λ = 0.154 nm) in reflection mode and 2θ ranging 
from 10° to 80°. The morphological analysis of  the samples is 
carried out using Scanning Electron Microscope (SEM, S-4700, 
Hitachi, Japan). The elemental composition of  the samples is 
tested by energy-dispersive X-ray spectroscopy (EDX). Trans-
mission electron microscopy (TEM) images were obtained on a 
Philips EM280 transmission electron microscopy with an acceler-
ating voltage of  150 kV. The magnetic properties of  the samples 
were measured with a vibrating sample magnetometer (VSM). N2 
adsorption/ desorption isotherms were performed at 196oC, by 
a BELSORP mini-II surface area measurement equipment, af-
ter degassing the samples under vacuum at 100oC overnight. IR 
transmittance spectra of  ferrite powder samples were measured 
on Bruker Equinox 55 infrared spectrophotometer (KBr pellets) 
in the range of  4000–400cm−1.

Preparation of  porous sphere-shaped MgFe2O4 particles

We synthesized porous magnesium ferrite (MgFe2O4) nano-
spheres exactly in the same manner as described in our previous 
work [25] but with a small modification. In a typical preparation, 
firstly 2g of  surfactant PEG was dissolved in 40 mL ethylene gly-
col under vigorous stirring to form a clear solution, and then 3.6 
g sodium acetate trihydrate, 2.5 mmol MgCl2∙6H2O and 5 mmol 
FeCl3∙6H2O were added to the above solution. This mixture was 

then vigorously stirred at 50oC for 30 min to form a homogene-
ous solution.  Finally the mixture was transferred into a 100 mL 
Teflon-lined autoclave, which was heated at 180oC for 16 h. After 
being cooled to room temperature, the black powders were col-
lected and washed several times with distilled water and ethanol 
to remove the impurities, and finally dried at 80oC in a vacuum 
oven for 8 h. 

For comparison, MgFe2O4 nanoparticles were also prepared using 
the same method without the introduction of  PEG.

Results and discussion

Morphology and pore structures of  MgFe2O4 nanospheres

Scanning electron microscope (SEM) was used to study the size 
and morphology of  the porous sphere-like MgFe2O4 particles 
and MgFe2O4 nanoparticles (prepared without PEG). As shown 
in Figure. 1 (a&b), the micrographs indicate that they are 100-
250 nm spheres in dimension and composed of  small primary 
particles. The particles are packed tightly as an outcome of  the 
attractive magnetic force and instinctive nature to reduce surface 
energy by aggregation. [26] TEM and HRTEM were used to fur-
ther examine the morphology, particle size and crystallinity of  the 
self-assembled products. Figure. 1c show TEM image of  sphere-
shaped MgFe2O4 particles, it could be further observed that the 
products are formed by nanoparticles, which are consistent with 
the SEM images. As shown in Figure. 1c, sphere-shaped MgFe2O4 
nanoparticles are assembled by the layers of  nanoparticles and ex-
hibit porous structures at the center. Further evidence of  the mi-
crostructure for sphere-shaped MgFe2O4 particles is given in HR-
TEM image. HRTEM images shown in Figure. 1d confirmed the 
single-crystalline nature of  the primary nanospheres. As depicted 
in Figure. 1d, the atomic lattice fringes can be clearly observed, 
and the interplanar spacings were measured to be 0.293 nm, 
which were close to the {311} lattice plane of  cubic MgFe2O4. 
Figure. 1e shows the SEM image of  MgFe2O4 nanoparticles pre-
pared without PEG for comparison. MgFe2O4 nanoparticles are 
about 10–85 nm in diameter.

Figure 1. SEM (a and b), TEM (c), HRTEM (d) images of  MgFe2O4 nanospheres and SEM (e) image of  MgFe2O4              
nanoparticles



M. Penchal Reddy, X. B. Zhou, Q. Huang, R. Ramakrishna Reddy (2014) Synthesis and Characterization of  Ultrafine and Porous Structure of  Magnesium Ferrite Nanospheres. Int J Nano Stud 
Technol. 3(6), 72-77. 74

www.scidoc.org/ijnst.php

Further, the nitrogen sorption measurement was conducted to 
evaluate the porous structure and specific surface area for such 
magnetic nanoparticles. Figure. 2 shows the large hysteresis loops 
between the adsorption and desorption isotherms in the P/P0 
ranging from 0.7 to 1, which confirms the formation of  mesopore 
textural porosity and the slight pore size distribution towards 
smaller mesopores (see the inset of  Figure. 2). The specific sur-
face area was thus estimated, by Brunauer–Emmett–Teller (BET) 
equation [27], to be 53 m2/g. In addition, the sorption exhibits 
type IV isotherm and the pore analysis has revealed that the pore 
sizes in the porous nanospheres mainly fall into 7.59 nm, which 
are in good agreement with the TEM analysis. The generation 
of  porosity is because of  the interspace between nanoparticles; 
therefore, the pore size distribution is very broad. Moreover, such 
nanospheres possess a higher specific surface area than MgFe2O4 
nanoparticles.

Crystal structure of  the porous sphere-like MgFe2O4 parti-
cles

Phase investigation of  the crystallized products (porous sphere-
like MgFe2O4 particles and MgFe2O4 nanoparticles) was per-
formed by XRD and the diffraction pattern is presented in Figure. 
3. All the XRD peaks can be indexed to the cubic spinel (JCPDS 
card no. 73-1960) structure with no extra lines corresponding to 
any other planes, which show that the prepared ferrites are single 
phase. The broadened nature of  these diffraction peaks indicates 
that the grain size of  the sample is on nano meter scale.

An additional quantitative analysis of  the prepared porous Mg-
Fe2O4 nanospheres was provided by EDX. EDX measurement 
results comply with what is expected from the synthesis. In other 
words, mass ratios of  chemical compositions are in agreement 
with the outcomes of  the EDX (Figure. 4). The experimental 
mass percentage and atom percentage for the sample are given in 
the Table (See Figure.4 inset).

Magnetic properties of  the porous sphere-like MgFe2O4 
particles

Such porous oriented ferrite nanospheres have exhibited good 
magnetic property. The hysteresis loop of  the MgFe2O4  spheres 
was recorded with VSM at the room temperature. The saturation 
magnetization (Ms), remanent magnetization (Mr) and coercivity 

(Hc) of  the product were obtained based on the magnetic hyster-
esis loop. As shown in Figure. 5 and Table 1, the Ms, Mr and Hc 
of  nanospheres are 70.25 emu/g, 19.60 emu/g and 326.41Oe re-
spectively; for nanoparticles, they are 50.46 emu/g, 11.42 emu/g 
and 617.83 Oe. The saturation value of  70.25 emu/g obtained in 
the porous MgFe2O4 nanospheres is higher than the value of  68.9 
emu/g for MgFe2O4 synthesized by a novel hydrothermal method 
[28] using acetates and aloe vera plant-extracted solution, 48.6 
emu/g for MgFe2O4 nanostructures fabricated by electrospinning 
[29], 30.6 emu/g for sol–gel/combustion synthesized MgFe2O4 
nano materials [30] and 14.09 emu/g for co-precipitation-synthe-
sized MgFe2O4 nanoparticles [31]. Porous sphere-like MgFe2O4 
nanospheres exhibit better magnetic properties than MgFe2O4 
nanoparticles.

According to the literature, the Ms, Mr and Hc of  the nanocrys-
tals are merely determined by the size [32]. Moreover, the mor-
phologies of  MgFe2O4 have some influence on magnetic proper-
ties [33]. Combined with XRD and TEM results, we suggest that 
the good magnetic properties of  sphere-shaped MgFe2O4 parti-
cles can be attributed to the high level of  crystallinity and proper 
nanoparticle size, as well as the unique morphology.

FT-IR analysis was applied to investigate the presence of  func-
tional groups and impurity on the surface of  the products. As can 
be seen in Figure. 6, The typical low frequency band at around 
592 cm-1 refers to Fe–O vibration (Fe3+ bond) in octahedral and 
tetrahedral sites and the band at around 435 cm-1 refers to Fe–O 
vibration (Fe2+ bond) in octahedral sites [34]. In addition, the 
bands at 3411 and 1621 cm-1 are attributed to the surface hydroxyl 
and the adsorbed water molecules, respectively [35]. The peakat 
1078 cm-1 may be attributed to the   C-H bending frequencies of  
the remaining trace EG [36].

Conclusions

In summary, we have successfully demonstrated a simple hy-
drothermal route to prepare porous MgFe2O4 nanospheres. The 
most important advantage of  this method is that it provides a 
one step, simple, general and inexpensive method for the prepa-
ration of  ferrite nanoparticles at low synthesis temperature. The 
synthesized MgFe2O4 nanoparticles had a spherical structure with 
a mean diameter of  about 200 nm, higher surface area and high 
magnetization of  70.25 emu/g. These porous MgFe2O4 nano

 

Fig. 2. N2 sorption isotherm of the porous MgFe2O4 nanospheres, with insets 
showing the BJH pore-size distributions for the corresponding samples. 
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Figure 2. N2 sorption isotherm of  the porous MgFe2O4 nanospheres, with insets showing the BJH pore-size distributions 
for the corresponding samples
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Figure 3. XRD patterns of  the MgFe2O4 nanoparticles (a) and porous MgFe2O4 nanospheres (b)
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Fig. 3. XRD patterns of the MgFe2O4 nanoparticles (a) and porous MgFe2O4 nanospheres (b). 
Figure. 4. EDS spectrum for the porous MgFe2O4 nanospheres

Figure 5. Magnetization hysteresis loop of  the porous MgFe2O4 nanospheres. The downright inset is an expanded low-field 
curve

 

Fig. 5. Magnetization hysteresis loop of the porous MgFe2O4 nanospheres. 
The downright inset is an expanded low-field curve. 
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Table 1. Magnetic characteristic of  the MgFe2O4 nanoparticles

Sample Ms (emu/g) Mr (emu/g) Hc (Oe)
MgFe2O4 spheres 70.25 19.6 326.41
MgFe2O4 particles 50.46 11.42 617.83
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spheres have excellent magnetic properties than that of  the Mg-
Fe2O4 nanoparticles. The developed magnetic nanomaterial is ex-
pected to find potential applications in separation, anodic material 
in lithium ion batteries, catalysts, and as electronic material for 
nanodevices and storage devices.
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