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During the recent decades, we have witnessed fertility rates 
dwindling worldwide, while metabolic diseases followed an 
opposite tendency, with their prevalence dramatically increasing 
[1-3]. Those trends are particularly marked in both developed 
and under-development countries, where type 2 diabetes mellitus 
(T2DM) and obesity are key players in the ever-increasingly 
number of  new metabolic disorder cases, fostered by overeating 
and sedentarism [3, 4]. 

The previous premises, acting during the same time period, 
arose the possibility of  metabolic disorders and infertility were 
somehow connected. In addition, a normal reproductive function 
requires a significant quantity of  energy, so it is highly influenced 
by energy homeostasis [5, 6]. Furthermore, the prevalence of  
reproductive dysfunction is significantly higher in people suffering 
from metabolic diseases, particularly males. From all the infertility 
cases documented worldwide, about a third account for male-only 
factor. In fact, even a pre-diabetic state is enough to harm sperm 
parameters [7]. However, the mechanisms underlying this link are 
still controversial.

The most evident burdens of  metabolic diseases on male 
reproductive function are caused by complications on other 
systems. Obese men experience more cases of  erectile dysfunction 
than lean males, due to cardiovascular co-morbidities. They can 
also suffer coitus difficulties due to excessive pubic fat deposition, 
which leads to other reproductive health risks, such as scrotal 
heating, responsible for defects in spermatogenesis. T2DM 
patients are also prone to erectile dysfunction and scrotal heating 
due to vascular disease [8]. Nevertheless, the most severe and 
persistent effects of  metabolic disorders on male reproductive 
function are linked to hormonal impairment.

The steroidogenic potential of  adipocytes is a good example of  
how a metabolic disorder, in this case obesity, is able to induce 
hormonal problems, and consequently affect reproductive 
function. Adipocytes have intense p450 aromatase, an enzyme 
responsible to convert testosterone into 17β-oestradiol (E2). 
Thus, obese men present higher E2 bloodstream concentration 
and lower testosterone than lean men. This action results in two 
immediate negative effects for male fertility: 1) Testosterone 
depletion leads men towards an hypogonadal state, and 2) E2 
secretion may exert negative feedback over pituitary gland and thus 
disrupt the reproductive axis. The former, inhibits the release of  
Gonadotrophin-Releasing Hormone (GnRH) and, consequently, 
of  the gonadotrophins Follicle Stimulatory-Hormone (FSH) and 
Luteinizing Hormone (LH). LH stimulates testosterone release 
from Leydig Cells, so ultimately reproductive axis disruption leads 
to the formerly mentioned lower testosterone concentration. 
Sertoli cells are crucial for spermatogenesis because they establish 
the blood-testis barrier (BTB), one of  the tightest blood-barriers 
of  our body [8]. Testosterone (and their precursors) and FSH 
direct Sertoli cell metabolism towards a glycolytic profile, uptaking 
more glucose, increasing lactate dehydrogenase (LDH) efficiency 
and releasing more lactate and acetate into the seminiferous 
tubule’s adluminal space [9, 10]. Lactate is one of  the preferential 
substrates for germ cell energy sources, besides presenting anti-
apoptotic effects on these germ line cells [11]. Oestrogens also 
play an important role on seminiferous tubular fluid composition 
and pH control, as they regulate the expression of  several ionic 
transporters in Sertoli cells [12-14]. Globally, oestrogens diminish 
transcellular transport rate and increases Sertoli cell’s intracellular 
pH [12]. 
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Unsurprisingly, gut hormones are major players linking metabolic 
disorders and reproductive function. Insulin is produced 
and released by pancreatic β-cells in response to high serum 
glucose concentration, and promotes global glucose uptake and 
metabolism. Testicular cells are not an exception. Insulin also 
promotes the expression of  glucose transporter family members 
(GLUT), the glycolytic metabolism and lactate production by 
Sertoli cells. In addition, type 1 diabetes mellitus (T1DM) patients 
present lower expression of  enzymes linked to glycolysis and 
GLUTs in testis, and lower lactate concentration in the adluminal 
compartment [15]. There is also in vitro evidence that those effects 
are present in Sertoli cells and directly connected to insulin 
deprivation [16].

Ghrelin is mainly secreted by the stomach in response to satiety. 
Its serum levels are inversely proportional to the global nutritional 
state. Ghrelin acts as a nutritional sensor for the pulsatile GnRH 
release by hypothalamus. Since reproductive function requires 
proper nutritional support [17] it is expected that ghrelin may be 
important for male reproductive health. Extremely low (obesity) 
and high (undernutrition) values of  ghrelin inhibit GnRH pulses, 
disrupting the hypothalamus-pituitary-reproductive axis [5, 18] 
also suggesting a major role in male reproductive physiology. 
Ghrelin is capable of  inhibiting testicular steroidogenesis by 
downregulation of  upstream elements of  the steroidogenic 
pathway [5]. These effects are quite similar to those of  leptin, 
and the ghrelin-leptin axis is pictured as a mechanism to avoid 
overeating [5]. Ghrelin also regulates insulin resistance in a dose-
dependent manner [17]. Higher ghrelin concentration is associated 
to higher insulin resistance, which is correlated to Sertoli cell 
metabolic shift towards glycogenesis [19, 20], in detriment of  
glycolysis and lactate production for germ cells. That may result 
in spermatogenesis arrest. 

Leptin is another hormone linked to satiety, although it is mainly 
expressed by adipocytes. Therefore, a higher adipose tissue mass 
means higher leptin blood concentration, and obesity is associated 
to the highest values. GLUT expression is upregulated by lean-
like leptin concentrations in Sertoli cells, but not by obese-like 
concentrations, although in both conditions acetate production 
was inhibited and LDH activity increased [21]. This data suggests 
a metabolic reroute towards β-oxidation using fatty acids as 
preferred substrate. Notably, leptin is known to inhibit testicular 
steroidogenesis by inhibiting the expression of  enzymes needed 
for the transport and the conversion of  cholesterol into steroids 
[5].

The burden of  metabolic disorders on male reproductive 
function is already being extensively characterized in bibliography. 
Nonetheless, there is still a significant number of  factors that 
are poorly or not described at all. This subject has tremendous 
research potential and knowledge about it is urgently needed, in 
order to tackle the pandemic in infertility, by understanding some 
of  its causes, and particularly associated with metabolic disorders, 
by describing the whole consequences of  them.
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