
International Journal of Computational & Neural Engineering. 2014 © 1

Alireza Faghani Ghodrat (2014) Observability of Minimal Cell Modelse 1:101

International Journal of Computational & Neural Engineering (IJCNE)
Observability of  Minimal Cell Modelse

            
Research Article

Motahareh Lotfzarie, Alireza Faghani Ghodrat* 

Department of  Electrical Engineering, Islamic Azad University, Damavand Branch, Tehran, Iran.

*Corresponding Author: 
Alireza Faghani Ghodrat,
Department of  Electrical Engineering, Islamic Azad University, Dama-
vand Branch, Tehran, Iran.
E-mail: alireza.faghani@chmail.ir

Received: February 29, 2014
Accepted: May 05, 2014
Published: May 28, 2014

Citation: Alireza Faghani Ghodrat, Motahareh Lotfzarie 
(2014) Observability of  Minimal Cell Models 1:101

Copyright: © 2014 Alireza Faghani Ghodrat. This is an open-ac-
cess article distributed under the terms of  the Creative Commons At-
tribution License, which permits unrestricted use, distribution and re-
production in any medium, provided the original author and source are 
credited.

Introduction

Neurons are responsible for transmitting messages through-
out the body via long distance electrical signals known as action 
potentials(AP). These depend on the active transport of  sodium 
and potassium ions across the cell membrane. At the cellular 
level, the electrical signal excitable cells amplify and propagate 
is a change in the potential across a cell’s membrane, caused by 
different ion currents flowing through the membrane’s channels. 
In fact for each excitation event, the electrical signal is called an 
AP. For non-pacemaking excitable cells, an AP is an externally 
triggered all or nothing response to an external stimulus: if  the 
stimulus is sufficiently strong, the cell fires an excitation AP [1]. 
The effect of  various drugs on the process of  neuron firing is a 
current research interest. The Hodgkin-Huxley equations math-
ematically model the influx and efflux of  these ions across the 
cell membrane. One of  the most important models in compu-
tational neuroscience is the Hodgkin-Huxley model of  the squid 
giant axon [2]. The Hodgkin-Huxley model is a combination of  
minimal models. A mixture of  one amplifying and one resonant 
gating variable results a minimal model. Each minimal model can 
oscillate at least from some values of  its parameters. There are 

only few minimal models and understanding their dynamics can 
shed light on dynamics of  more complicated electrophysiological 
models [3].

To know what really happens inside the cell we need to observe 
the state of  a cell. In fact observability is a structural property of  
a control system defined as the possibility to deduce the state of  
the system from observing its input-output behavior [4]. In some 
cases these states cannot be measured directly. Here we need to 
observe them by an observer and check the observability of  such 
systems. Observability is a useful property for analyzing minimal 
models. Minimal models can be represented by nonlinear differ-
ential equations. So we must use nonlinear approach to analyze 
the properties of  such systems.

Problem Formulation

a) Hodgkin-Huxley Model

Using pioneering experimental techniques of  that time, Hodg-
kin and Huxley in 1952 [8] determined that squid axon has three 
major current: voltage gated persistent K+ current with four ac-
tivation gates (n4 term), voltage gated transient Na+ current with 
three activation gates and one inactivation gate (m3h term) and 
Ohmic leak current, IL, which is carried mostly by Cl- ions. The 
complete set of  space clamped Hodgkin-Huxley equations is [3]:
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Abstract

Identifying and modeling of  biological systems is very useful to understand cell's dynamic. To know what really happens inside the 
cell we need to observe the state of  a cell. In fact observability is a structural property of  a control system defined as the possibility to 
deduce the state of  the system from observing its input-output behavior. Any complex cell model is a combination of  some minimal 
models which are simpler than complex cell model because they have two dimensions. These models can describe the behavior of  the 
cell. The property of  observability for nonlinear systems is very useful in analyzing such systems. This paper deals with the observ-
ability of  minimal cell models. Based on the fact that the minimal cell models are nonlinear, analyzing the property of  these models 
need nonlinear methods. The method has been used for observability is Lie Derivative. The results indicate observability of  minimal 
cell models.
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By using this formulation, we obtain the minimal cell models.

b) Minimal Cell Models

Let us do the following thought experiment: Consider a conduct-
ance-based model capable of  exhibiting periodic spiking and re-
move completely a current or one of  its gating variables, and if  
the reduced model has a limit cycle attractor at least for some 
values of  parameters, we arrive at the model that satisfies the fol-
lowing two properties:

• It has a limit cycle attractor, at least for some values of  pa-
rameters.

• If  one removes any current or gating variable, the model has 
only equilibrium attractors for any values of  parameters.

We refer to such models as being minimal or irreducible for 
spiking. Thus, minimal models can exhibit periodic activity, but 
their reductions cannot. According to this definition, any space-
clamped conductance-based model is a combination of  some 
minimal ones. If  not, then it can be reduced to a new minimal 
model. For example, the Hodgkin-Huxley model considered is 
not minimal for spiking. This model consists of  three current: 
leakage IL, transient sodium INa,t (gating variables m and h) and 
persistent potassium Ik (gating variable n).

For definition of  the minimal models we employ here a bottom-
up approach, which is based on the following rule: A mixture of  
one amplifying and one resonant gating variable (plus an ohmic 
leak current) results in a minimal model. Indeed neither of  the 
variables alone can produce oscillation but both are enough [3].

The amplifying gating variable is the activation variable m for 
voltage gated inward current or inactivation variable h for voltage 
gated outward current. These variables amplify voltage changes 
via a positive feedback loop. Indeed a small depolarization in-
creases m and decreases h which in turn increases inward and 
decrease outward current and produce more depolarization. Simi-
larly a small hyper polarization decreases m and increases h, re-
sulting in less inward and more outward current and hence in 
more hyper polarization.

The resonant gating variable is the inactivation variable h for an 
inward current or activation variable n for an outward current. 
These variables resist voltage changes via negative feedback loop. 
A small depolarization decreases h and increases n which in turn 

decreases inward and increases outward current and produce a net 
outward current that resists the depolarization. Similarly a small 
hyper polarization produces inward current and possibly rebound 
depolarization.

A typical neuronal model consists of  at least on amplifying and at 
least one resonant gating variable. Two amplifying and two reso-
nant gating variables produce four different combinations depict-
ed in Figure. However, the number of  minimal models is not four, 
but six. The additional models arise due to the fact that a pair of  
gating variables may describe activation/inactivation properties 
of  the same current or of  two different currents [3].

INa,p+ Ik-model

One of  the most fundamental models in computational neurosci-
ence is the INa,p+ Ik-model consisting of  a fast Na+ current and a 
relatively slower K+ current
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Here m(t) is much faster than the voltage variableV(t), so that m 
approaches the asymptotic value m∞ (V)  instantaneously. In this 
case we can substitute m = m∞(V).
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INa,t-model

An interesting example of  a spiking mechanism is given by the 
INa,t-model which consisting only of  an ohmic leak current and a 
transient voltage-gated inward Na+ current.
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Figure 1: Any combination of  one amplifying and one resonant gating variables results in a spiking model [3].



International Journal of Computational & Neural Engineering. 2014 © 3

Alireza Faghani Ghodrat (2014) Observability of Minimal Cell Modelse 1:101

The upstroke of  an action potential is generated because of  the 
regenerative process involving the activation gate m. This mecha-
nism is similar to the one in the Hodgkin-Huxley model or in the 
INa,p+ Ik-model: Increase of  m results in increase of  the inward 
current, hence more depolarization and more increase of  m until 
the excited state is achieved. At the excited state there is a balance 
of  the Na+ inward current and the leak outward current.

Assuming that activation dynamics is instantaneous, we use m = 
m∞(V)  in the voltage equation and obtain:
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INa,p+Ih-model

The system describes the essence of  the mechanism of  slow sub 
threshold voltage oscillations in some cortical, thalamic, and hip-
pocampal neurons.
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We assume that the activation kinetics of  the Na+ current is in-
stantaneous, and use m = m∞(V)  in the voltage equation to obtain 
a two-dimensional system:
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Ih+ Ikir-model

The persistent Na+ current, which amplifies damped oscillations 
in the INa,p+Ih-model, can be substituted by the K+ inwardly recti-
fying current Ikir to achieve the same amplifying effect.
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Since kinetics of  Ikir is practically instantaneous, we can use 
hKir=hKir,∞(V), in the voltage equation above and consider the two-
dimensional system 
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Ik+Ikir-model

In the Ik+Ikir-model
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The amplifying current is Ikir with inactivation gating variable h, 
and the resonant current is Ik with activation variable n. 

The kinetics of  the amplifying current Ikir is relatively fast so that 
h = h∞(V) can be used in the voltage equation to reduce the three-
dimensional system above to a two dimensional system.
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IA -model

The last minimal voltage-gated model has only one transient K+ 
current, often referred to as being A-current IA, yet it can also 
generate sustained oscillations. In some sense, the model is simi-
lar to the INa,t -model. Indeed, each consists of  only one transient 
current and an Ohmic leak current. The only difference is that 
A-current is outward, and as a result, the action potentials are 
fired downward. The A-current has activation and inactivation 
variables m, and h, respectively, and the model has the form:
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We are tempted to substitute m = m∞(V) into the voltage equa-
tion above and reduce the IA -model to a two-dimensional system, 
which hope-fully would have the right kind of  nullclines and a 
limit cycle attractor.
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Then we define the observability property of  systems.

Method

Observability

Consider the nonlinear system [5]:
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Two states x0 and x1are distinguishable if  there exists an input 
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function μ such that:

( ) ( )10 xzxz ≠

The system is locally observable at x0 if  exists a neighborhood of  
x0 such that every x in that neighborhood other than x0 is distin-
guishable from x0. A test for local observability is that [6]:
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Where the output of  nonlinear system is:

[ ]TPhhz ,,1 =
(18)

Generally h1 to hP are nonlinear functions of  x, and:
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Here  Lf(hi) is the Lie derivative of  h with respect to f  which is 
defined below [6]:
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By definition, L0
f(h)=h.

We can also define higher-order Lie Derivatives [7]:
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By this test method, we check the observability of  each minimal 
cell model.

Results

Observability of  Minimal Cell Models

For each minimal model first we construct l matrix then O matrix 

and then calculate the rank of  O matrix. For some conditions the 
O matrix is not full rank. So we determine the condition that the 
O matrix is full rank and then the system is observable. 

For example in the following we calculate the O matrix for 
INa,p+Ik-model and write the details for checking the observability 
condition. 

Equation (3) describes the INa,p+Ik-mode. By using these equa-
tions, f1 and f2  can be written as below:

f1 = 1/C ( -gL (V-EL) - gNam∞ (V) (V-ENa) - gKn (V-EK))
f2 = (n∞ (V) - n)/τn(V)
h=V              (22)

Here I=0.

After calculation the Lie derivatives we can construct the l matrix 
as below:

[ ]TfVl 1=

              (23)
And

          (24)
For observability O must be full rank. So:
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With this condition the system is observable. We can run above 
procedure for other minimal cell model. The results are given in 
TABLE.

Conclusion

Using the results table, all minimal cell models are observable ex-
cept on one line in state plane. By this condition we can consider 
these minimal models observable. Here we analyzed the observ-
ability property of  minimal cell models. As a result we can use 
observers like Kalman Filter [8], in this case Extended Kalman 
Filter  to observe the states of  this nonlinear systems and via us-
ing a state feedback we can control the nonlinear behavior of  a 
cell. In next research we'll focus on controllability property [5,7,9] 
of  minimal cell models. 

Table 1: Result of  checking the observability of  minimal cell models.

Item Model Name Observability Condition
A INa,p+Ik V≠Ek

B INa,t V≠ENa

C INa,p+Ih V≠Eh

D Ih+Ikir V≠Eh

E Ik+Ikir V≠Ek

F IA V≠Ek
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