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Introduction

Though most associate unmanned aerial vehicles (UAVs) with 
the military, the number of  nonmilitant applications is growing 
everyday including precision agriculture, package delivery, 
geological survey, and a myriad of  other public applications. As 
such, it is becoming increasingly important for these vehicles 
to not only support longer mission durations but to also do so 
in a way that is cost effective and minimally pollutant both in 
emissions and noise. Given the current state of  battery technology, 
purely electric UAVs fail to provide desirable mission durations. 
In addition, the noise and pollution associated with gasoline or 
other internal combustion engine powered UAVs is undesirable 
for applications in populated areas. Given these constraints, the 
best solution to achieve the desired goals of  clean, quiet, and 
extended missions is to develop a hybrid-electric UAV platform. 
Hybrid-electric power train leverages the advantages of  both 
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Glossary of  Variables: 

kT                   – Thrust coefficient of  the propeller
ρ             – Air density
n             – Rotational speed of  the propeller (rev/s)
D            – Propeller’s Diameter (in)
AP           – Wing planform area
CL           – Wing coefficient of  lift
J             – Propeller advance ratio (u/nD)
AF          – Aircraft frontal area
CD          – Sum of  the parasitic (CDo) and lift induced (CDi) drag coefficients
AR         – Wing aspect ratio
    e         – Oswald efficiency factor
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energy sources while minimizing the disadvantages. This paper 
will outline the dynamics associated with a typical UAV missions 
and offer governing equations from which a hybrid-electric power 
train platform can be designed and optimized to offer peak 
efficiency while minimizing noise and emissions. 

Power Required to Maintain Flight

Newton’s second law, the sum of  the external forces on the aircraft 
is equal to the product of  the craft’s mass and the acceleration of  
its center of  mass with respect to the inertial frame (Figure 1).
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External Forces Acting Upon the Aircraft

From the free body diagram:
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Therefore the forces in Equation 1 referencing the inertial frame 
can be expressed with respect to the aircraft’s frame:
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Assuming the angle φ = 0 at steady state, the sum of  external 
forces then becomes:
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Figure 1. Inertial and Rotating Reference Frames.

Figure 2. Free Body Diagram of  the Aircraft during Level Flight.

Figure 3. Free Body Diagram of  the Aircraft during a Banking Maneuver.
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Setting the above equation equal to the expression found using 
Newton’s second law yields:
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Therefore for the aircraft to maintain flight, the following must 
remain true:
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Equation 2 – Thrust Force Required to Sustain Flight
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Equation 3 – Lift Force Required to Sustain Flight

The roll angle required to maintain equilibrium (assuming Φ=0) 
during loitering can also be derived from the sum of  the forces 
about the j axis:

mg (cos0sinθ) = (mu2/R)cosθ
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Equation 4 - Roll Angle Required During Loitering

External Forces

Thrust Force

The thrust force (FT) is expressed as:

2 4
T TF k n Dρ=

Equation 5 - Thrust Force Equation [1]

To establish the operating point of  the engine to provide adequate 
thrust for maintaining flight, some relations can be applied using 
information about the propeller.

The propeller’s torque coefficient can be expressed as:
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Equation 6 - Propeller Torque Coefficient [1]

The torque coefficient can be related to the thrust coefficient 
through the propeller’s efficiency:
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Equation 7 - Propeller Efficiency with Respect to Advance 
Ratio [1]

Rearranging Equation 7:
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Equation 8 - Thrust Coefficient with Respect to Prop 
Efficiency and Torque Coefficient

Plugging in Equation 6:
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Equation 9 - Thrust Coefficient with Respect to Torque 
and Angular Velocity

Plugging Equation 9 into Equation 5:

Lift Force

The lift force (FL) is expresses as:

21
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Equation 10 - Lift Force

Drag Force

The total drag force (FD) is expressed as:

21
2D F DF A u Cρ=

The coefficient of  drag CD, is the sum of  the coefficient of  
parasitic drag CDo and the lift induced drag coefficient. The lift 
induced drag coefficient is expressed as:
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Therefore, the total drag is expressed as:
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Equation 11 - Total Drag Force

Plugging Equation 11 into Equation 2 and solving for Qn yields:
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Equation 12 – Input Torque/Speed Required to Surmount 
Drag

Plugging Equation 10 into Equation 3 yields:
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Equation 13 – Airspeed Required to Surmount Weight

Equation 4, Equation 12, and Equation 13 serve as necessary 
conditions to sustain flight over the course of  the mission. 
Equation 12 dictates the minimum combination of  torque and 

shaft speed that must be delivered to the propeller, Equation 13 
dictates the minimum speed that must be maintained to prevent 
stall, and Equation 4 dictates the minimum roll angle required to 
maintain a constant loitering radius about the target at the desired 
air speed.

Conclusion

The rapidly expanding market for UAVs will bring with it 
demand for more flexible platforms that can be quickly and 
easily assembled and modified based on mission parameters. 
Additionally, the increasing precedence of  reducing fuel 
consumption and emissions is forcing designers to think more 
and more outside of  the box to satisfy radically conflicting design 
requirements. Though adding additional complexity to an already 
sophisticated system can seem arduous, a firm understanding 
of  the fundamental governing equations and the relationship 
between the various inputs and outputs, the design process 
becomes much more seamless.
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