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Introduction

Commercial camera utilization for space applications has attracted 
the attention of  vast number of  researches. Accurate spacecraft 
attitude determination requires a good estimation of  the camera 
optical parameters. For star sensors, it is common to estimate 
focal length, optical distortion, and principal point. These 
parameters are considered to be critical for star identification 
algorithms which are utilized to identify certain stars located 
at the captured image. This process is usually characterized by 
a huge computational effort which is very sensitive to these 
parameters. Samaan M (2012) utilizes a commercial off-the-shelf  
camera as a low cost star tracker. Camera optical parameters and 

lens distortion are estimated in Zhou F (2015), Dzamba T (2009), 
discusses the problem of  characterization of  field curvature and 
lens astigmatism aberrations. Pal M, Bhat M (2009), solves the 
problem of  spacecraft attitude determination independent of  the 
problem of  camera calibration except for the distortion of  the 
camera lens. The star spot location is estimated in Liu HB (2011) 
based on Kalman filter only. Samaan MA (2001) uses only two 
methods to estimate the camera focal length. Samaan MA (2003) 
used the least squares to optimally estimate the focal length.

Spacecraft in-orbit failure could be divided into, mechanical 
failure, software failure, electrical failure, and unknown [8]. 
When a spacecraft is totally lost due to any of  these reasons, it is 
necessary to determine whether it is still in-orbit or not. If  such a 
case is encountered, the optical observation of  the spacecraft is an 
optimum choice to assure that the spacecraft is still in-orbit, see 
[9] for more details. In addition, optical observations could help to 
increase the accuracy of  orbit predictions. Nowadays, commercial 
cameras could be used instead of  complex, heavy, and expensive 
telescopes for optical observations. Spacecraft orbit estimation 
based on optical observations captured by a commercial camera 
is considered to be a challenge that has never been posed before. 
The nature of  the process of  spacecraft optical observation is 
somehow different than that of  star identification. Thus, the 
critical parameters of  the two processes are not the same. For, the 
problem of  spacecraft optical observation the camera focal length 
is considered to be the main parameter of  utmost importance.

The contribution of  this research is to use approximately costless 
algorithms of  commercial camera calibration for the purpose of  
spacecraft orbit determination. We should also take into account 
that the problem of  spacecraft orbit estimation, based on optical 
observations captured by a commercial camera, is considered 
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to be a challenge. Thirteen different algorithms are utilized 
such as Kalman filter, unscented Kalman filter, derivative free 
implementation of  the extended Kalman filter, genetic algorithms, 
and simulated annealing are utilized to accurately determine the 
camera focal length based on actual measurements provided by 
the camera. The results of  all of  these algorithms are compared 
to each other in terms of  an error cost function that needs to be 
minimized.

Process and Measurement Model

The camera focal length is commercially provided by its 
manufacturer. The utilized camera model in this research is 
supposed to have a minimum focal length of  4mm. The process 
model is given by

0=
o
X  ----(1)

Where the state vector, X, consists from the camera focal length. 
Figure.1 shows the observation geometry associated with the 
calibration process. The calibration process starts by taking 
an image for at least two reference stars in the sky using free 
software such as. The star azimuth angle is named, Φc, and the star 
elevation angle is named, λc [10] expressed in the sensor reference 
frame of  axes. Camera attitude angles are defined with respect 
to North West Zenith (NWZ) system of  axes, shown in Figure. 
2. In the case of  zero attitude angles, the camera body axes are 
coinciding with the NWS coordinate system. Thus, the star unit 
vector expressed in the NWZ reference frame is given by 
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The first and the second star unit vector expressed in the North 
West Zenith (NWZ) system of  axes is given as
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Recall that,  Φ1, λ1, Φ2, and λ2  are given by any free software such 
as Stellarium. Therefore, V1, and V2 are totally known. Similarly, 
these vectors are represented in the camera body axes (denoted 
by the subscript c), as
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Measurements of  the focal length could be calculated from either 
of  the two equations

( )c

Uf
φtan

=
----(5)

and

( )c

cV
f

λ
φ

tan
)cos(

=
----(6)

Where,

U : Is the measured horizontal distance of  a reference object 
      imaged by the camera at the focal plane.
V : Is the vertical distance of  a reference object imaged by the 
      camera at the focal plane.
Φc : Object azimuth angle with respect to camera body axes.
λc   : Object elevation angle with respect to camera body axes.

Thus, we have two sets of  measurements.

The Kalman Filter

Traditionally, the Kalman filter was used to estimate system states 
and reduce the effect of  noise and disturbances. The best estimate 
is chosen such that, the expected value of  the error squares’ sum 
is minimum. So,

( )( ){ } minimumˆˆ =−−
T

kkkk XXXXE  ----(7)

Now, suppose that we have a continuous process model described 
by

Figure 1. Observation Geometry.
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o
X X Bu= Φ +  ----(8)

Where u the system is input, and B is the input matrix. Equation 
(8) could be transformed to its equivalent discrete form with 
sampling interval  ΔT as
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 ----(9)

Reordering

( )1 1 1 1k k k k kX I T X TB u− − − −= + ∆ Φ + ∆ ----(10)

Therefore,

11111 −−−−− ++= kkkkkk wuGXAX ----(11)

With
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And

1−kw  : Is the process noise characterized by.
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kQ , is the non-negative definite covariance matrix of  the process 
noise. The measurement process is modeled as

kkkk vXHz +=  ----(15)

And  kv  is the measurement noise characterized by.
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Rk the non-negative definite covariance matrix of  the 
measurement noise. The time and measurement update equations 
of  the Kalman filter are given as

11111
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− ++= kkkkkk wuGXAX ----(17)
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[ ] [ ] T
kkk

T
kkkkkk KRKHKIPHKIP +−−= −

----(21)

With

kẑ : Estimated measurements.

kA : State transition matrix.

−
kX̂ : Priori estimate of  the state.

   Pk :  A posteriori covariance of  the estimation error.

kX̂ : A posteriori state estimate.

kH : Measurement matrix.

Unscented Kalman filter (USKF)

The unscented Kalman filter algorithm follows the fundamental 
steps of  the Extended Kalman Filter (EKF). The difficulties 
associated with the traditional EKF are alleviated by the USKF. 
The filter basic structure given in [11], and [12] is briefly reviewed 
in this section. The USKF prediction stage starts by forming 
(2N+1) sigma points as follows

Figure 2. North-West-Zenith coordinate system.
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1
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[ ] ( ) 11 −+=∆∆ kN PNXX ξ
----(23)

With  ξ defined as an adjustment coefficient calculated from

N−= 3ξ  ----(24)

And

IkkI XX ∆+= −− 11,
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The filter time update steps for the sigma points are

( )1,, −= kJkJ f χχ  Where NJ 2,....,2,1,0= ----(27)
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Thus, the state estimate −
kX̂ , is given by the relation 
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Accordingly, the estimated observation corresponding to kJ ,χ   
is given as

( )kJkJ hZ ,, χ=  ----(31)
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The equations which represent the filter measurement update are 
given by
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T
k XX k ZZ kP P K P K= −  ----(37)

Roh K (2007) also describes the basic structure of  the USKF with 
some modifications given below.

1
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With, λ, defined as a scaling parameter that could be computed 
using the relation

NN −+= )(2 ξαλ  ----(40)

Given that ( α = 1), ξ  is a secondary scaling parameter given as

N−= 3ξ  ----(41)

With

IkkI XX ∆+= −− 11,
ˆχ  And 

NI ,....,2,1=  ----(42)

IkkIN XX ∆−= −−+ 11,
ˆχ   ----(43)

The filter time update steps for the sigma points are still the same 
as equation (27). With the weights calculated from
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(β = 2 For Gaussian distribution). Therefore, the state estimate 

−
kX̂ , is given by the relation
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The estimated observation corresponding to kJ ,χ  is given 
throughout the relation
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( )kJkJ hZ ,, χ=  ---(48)
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The equations which represent the filter measurement update are 
now given by
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Derivative free Implementation of  the Extended 
Kalman filter (DFEKF)

Derivative free implementation of  the extended Kalman filter was 
firstly developed in [14]. If  the number of  filter states are given 
as N, then N vectors, ΔX1 , ΔX2, …. ΔXN, could be formed as 
follows,
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The constant αD  is a scaling parameter. The estimated observations 
at each YI,k could now be calculated from

( )kIkI YhZ ,, =  ----(62)

( )−= kk Xhz ˆˆ  ----(63)

Thus, the filter measurement update stage is given by
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Filter Covariance

The process noise covariance, kQ  , in its discrete form is related 

to its continuous form, Q  , by the following equation [15]

( ) ( ) ηηη dtAQtAQ T
k

T

kk ,, 1
0

1 +

∆

+∫=  ----(69)

Similarly, the measurement noise covariance, kR , in its discrete 

form is related to its continuous form, )(tR , by the following 
equation [16]

TtRRk ∆= )(  ----(70)

We should also from ref. [16] note that, for a multi-rate Kalman 
filter (i.e, different measurement rates coming from different 

sensors), 01 →−
kR  , and hence 0→kK .

Observability Analysis

The filter state transition matrix based on Floquet theory for a 
discrete time system is given by [17]

[ ] kkk

N

k
O AHKIA −∏=

=1
 ----(71)

For a stable filter, the OA  matrix Eigen values must all have a 
magnitude less than unity. The rate of  convergence is indicated 
by the smallness of  the Eigen values.

Finding the Global Optimum Solutions and 
Formulation of  the Cost Function

It is well known that there exists several algorithms to find global 
optimum solutions (i.e. finding the minimum or maximum) of  a 
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certain cost function. Genetic algorithms, and simulated annealing 
could be used efficiently for such purpose. These algorithms will 
not be reviewed herein. The reader should refer to standard text 
books such as [18] to find more relevant information. Camera 
attitude with respect to NWZ coordinate system is represented by 

three rotations cφ , cλ , cθ  around three independent axes, Z, 
Y, and X respectively. Thus, for the first star, we could write down 
the following transformation matrices

( )1

cos( ) sin( ) 0
sin( ) sin( ) 0

0 0 1

c c

c c cTZ
ϕ ϕ

ϕ ϕ ϕ
− − − 
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 ----(72)
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The same transformations are applied also to the second star. So, 

if  a unit vector pointing to the north, nV  , it follows that

( ) ( ) ( )1 1 1 1 1 1 1 1( ) ( )n c c c c c nV TZ TY TX TZ TY Vϕ λ θ ϕ λ=  ---- (75)

And similarly

( ) ( ) ( )2 1 1 1 1 2 1 2( ) ( )n c c c c c nV TZ TY TX TZ TY Vϕ λ θ ϕ λ=  ----(76)

Based on the above treatment, the cost function to be minimized 
could be expressed as

nnnn VVVVJ −+−= 21  ----(77)

At this point, we have two solutions. The first solution is to 
search for the minimum of  the cost function in the 4 dimensional 
space corresponding to f, Φc, λc, and θc. The second solution is to 
search only for the focal length that minimize this cost function 
and obtain Φc, λc, and θc using the TRIAD method described 
in [19]. Both solutions are investigated herein. The minimum 
of  the cost function given by equation (77), could be obtained 
using numerical algorithms such as genetic algorithms (GA), or 
simulated annealing (SA).

Experimental validation

Estimation algorithms

The performance of  the prescribed estimation algorithms is 
evaluated based on actual measurements. The estimation error is 
plotted in Figure.1 for the three algorithms which are namely: the 
Kalman filter (KF), the derivative free Kalman filter (DFEKF), 
and the unscented Kalman filter (USKF). The error is measured 
with respect to a simulated camera that has a focal length equal 
to that was given at the obtained image prosperities written by 
the camera for each image. Three camera models are used in 

this research, Benq GH600, Canon PowerShot SX150 IS, and 
Samsung DV100 Digital camera. Figure.3. Shows the estimated 
focal length using KF, DFEKF, USKF, in addition to the measured 
focal length based on λ measurements (LM) and Φ measurements 
(PM) respectively of  the camera model Benq GH600. All of  
the calibration images have a theoretical focal length of  4mm as 
indicated by the prosperities of  the images.

As clear in these figures the filters have succeeded in filtering 
the high noise associated with measurements. In addition, the 
estimator is able to converge quickly despite of  large initial 
estimation error, which is thrown in purpose to prove the high 
performance of  the estimator. The maximum Eigen values of  A0 
the matrix is 2.9×10-152 which is a very small value that indicates a 
high rate of  convergence. If  the measurements were smoothed, 
the resulting estimated focal length is shown in Figure 4.

Iteration based methods

The required parameters to be determined from the image are 
camera attitude angles and focal length. The proposed algorithm 
scans a range of  focal lengths, and for each foal length solves for 
the attitude angles using the triad method, and finally computes 
an error. At this point there are several algorithms are adopted as 
follows:

Algorithm A: The range of  focal lengths is selected and scanned 
by the simply evaluating the error corresponding to each focal 
length, and the focal length with minimum error is chosen based 
on simple gridding technique.	

Algorithm B: The error is plotted versus the focal length, and the 
focal length is selected graphically from the graph, as shown in 
Figure.5. As clear in this figure the error function is even.

Algorithm C: The focal length is determined based on genetic 
algorithms.

Algorithm D: The focal length is determined based on simulated 
annealing.

Algorithm E: The focal length and camera attitude are determined 
based on simple gridding.

Algorithm F: The focal length and camera attitude are determined 
based on genetic algorithms.   

Algorithm G: The focal length and camera attitude are determined 
based on simulated annealing.
A comparison among all of  the utilized algorithms is given in 
Table 1.

As shown in Table.1. The best performance (in terms of  the 
selected cost function) is achieved by algorithms G, and F 
respectively. Algorithms A, B, C, D, E, and F show medium 
performance. Data smoothing has enabled estimation algorithms 
to enhance their performance. There are also some important 
notes those must be mentioned  regarding estimation algorithms. 
The first note is that the cost function that is minimized by these 
estimation algorithms is given by equation (7) not equation (77). 
So, their performance is not the best in terms of  the formed cost 
function defined in equation (7).
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Therefore, these algorithms obtain lower performance in terms 
of  the cost function defined by equation (77) than the other 
algorithms. The second note that should be mentioned is that 
these algorithms converge quickly, nearly in the second time step 
despite of  large initial estimation error because of  the strong 
observability indicated by the small Eigen values of  equation 
(71). Consequently, it is considered to be a good design approach 
to initialize the process of  focal length estimation based on 
estimation algorithms and then proceed to a fine tuning process 
by using iteration based algorithms such as algorithm F. On the 
other hand, estimation algorithms are complex and require lots of  
mathematical treatment. The simplicity of  medium performance 
algorithms such as Algorithm B, may represent an advantage 
even though they are characterized by medium performance. 
The algorithms presented in Table 1 are applied for two camera 
models which are Canon PowerShot SX150 IS (Table 2), and 
Samsung DV100 (Table 3) Digital camera respectively. As clear 
in both tables, algorithms B, and F, usually achieve a very good 

performance. This result is identical to what is obtained in Table 
1.        

Conclusion

The problem of  camera focal length determination has turned 
out to be of  much importance for the purpose of  spacecraft 
orbit observation based on commercial camera instead of  large, 
heavy, complex, and expensive telescopes. Thirteen different 
algorithms are examined extensively to solve this problem. A 
comparison among these algorithms showed that estimation 
algorithms are able to converge despite of  large initial estimation 
error. The performances of  these algorithms are enhanced if  they 
are preceded by the process of  measurement smoothing. On the 
other hand estimation algorithms are characterized by complexity 
and low performance in terms of  the cost function defined by 
equation (77). Some medium performance algorithms such as 
Algorithm B are characterized by their simplicity compared 

Figure 3. Estimated focal length.
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Figure 4. Estimated focal length based on smoothed measurements.
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Figure 5. Error as a function of  the focal length.
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Table 1. Comparison among algorithms for the camera Benq GH600.

     Variable Algorithm f  (mm) Error
KF 3.526 1.007×10-1

DFEKF 3.526 1.008×10-1

USKF 3.526 1.007×10-1

KF (smoothed measurements) 4.48 5.856×10-3

DFEKF (smoothed measurements) 4.48 5.855×10-3

USKF (smoothed measurements) 4.48 5.856×10-3

Algorithm A 4.563 7.384×10-4

Algorithm B 4.55 2.478×10-5

Algorithm C 4.555 4.746×10-4

Algorithm D 4.551 6.789×10-5

Algorithm E 4.542 3.7632×10-5

Algorithm F 4.55 4.364×10-7

Algorithm G 4.55 4.047×10-7

 Table 2. Comparison among algorithms for the camera Canon PowerShot SX150 IS.

     Variable Algorithm f  (mm) Error
KF 4.744 1.925×10-2

DFEKF 4.891 1.047×10-2

USKF 4.744 1.925×10-2

KF (smoothed measurements) 4.943 7.481×10-3

DFEKF (smoothed measurements) 4.992 4.723×10-3

USKF (smoothed measurements) 4.943 7.481×10-3

Algorithm A 5.064 7.670×10-4

Algorithm B 5.08 9.724×10-5

Algorithm C 5.098 1.063×10-3

Algorithm D 5.078 1.050×10-5

Algorithm E 5.064 7.670×10-4

Algorithm F 5.078 1.050×10-5

Algorithm G 5.153 3.974×10-3

Table 3. Comparison among algorithms for the camera Samsung DV100 Digital camera.

     Variable Algorithm f  (mm) Error
KF 4.906 9.833×10-2

DFEKF 4.869 9.698×10-2

USKF 4.906 9.833×10-2

KF (smoothed measurements) 4.836 9.576×10-2

DFEKF (smoothed measure-
ments)

4.879 9.734×10-2

USKF (smoothed measurements) 4.836 9.576×10-2

Algorithm A 4.883 9.749×10-2

Algorithm B 4.88 1.496×10-4

Algorithm C 4.886 1.851×10-4

Algorithm D 4.883 2.697×10-4

Algorithm E 4.987 5.701×10-3

Algorithm F 4.882 3.791×10-5

Algorithm G 4.929 2.561×10-3
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to estimation algorithms. Algorithms G, and F, exhibit high 
performance but they are based on iteration. Accordingly, a good 
design approach could be achieved if  estimation algorithms are 
used first, and then a fine tuning process is performed by using an 
iteration algorithm such as algorithm F.
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