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Acceleration Measurement

Different researches and text books had discussed the inertial 
navigation system, or some of  its components such as [1-3] and 
[4]. The inertial navigation system accelerometer consists of  a 
proof  mass m suspended from a case by a pair of  springs, as 
illustrated in Figure. 1. Referring to Figure. 1, the input axis is in-
dicated by the arrow. If  the body to which the system is attached 
is accelerating along this axis by an acceleration, a, the proof  mass 
will be displaced from its equilibrium position by an amount, x. 
From Newton’s law, the force affecting on the proof  mass is equal 
to the mass times the acceleration. And from Hook’s law, the 

force generated by the springs are equal to the equivalent spring 
constant, K, times the displacement x. Thus, from Newton’s law 
we find that

F = m a = K x					     (1)

Therefore the measured acceleration is

a = 
m
K

 x 					     (2)

Consequently, acceleration in the plus direction causes the proof  
mass to move downward indicating positive acceleration. The 
displacement x is sensed using a pick-off  and scaled to provide 
the value of  acceleration. The proof  mass equilibrium position 
is calibrated for zero acceleration. If  the accelerometer is set on 
a bench in the earth’s environment, the gravity force will shift 
the proof  mass downward w.r.t the case indicating positive accel-
eration. However, the gravitational acceleration is downward. For 
this reason, equation(1) becomes

F = m (a-g) = K x					     (3) 

And the measured acceleration is

a - g =  
m
K

 
x = f 					      (4)

Where, f  is the specific force.

Commonly used Reference Frames

The earth centered earth fixed (ECEF) coordinates are defined 
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such that the XE axis points towards the intersection between the 
Greenwich meridian and the earth’s equatorial plane, this point 
has a longitude and latitude (0,0) deg respectively [5]. The ZE axis 
of  the ECEF axis is the earth’s rotational axis about itself. The YE 
axis is chosen to complete the right hand rule system. 

The local-level (navigation) frame is defined such that X axis (E) 
points toward the east, Y axis (N) points to the north, and the Z 
axis (UP) points in the direction from the earth center to the INS 
origin. The ECEF and the navigation frame are illustrated in Fig-
ure 2. The Geocentric-Inertial system has its origin at the earth’s 
center. The fundamental plane is the equatorial plane. The posi-
tive Z axis points in the direction of  the North Pole, the positive 
X axis points in the direction of  the vernal equinox on the first 
day of  spring, and the positive Y axis completes the right handed 
set of  coordinates. It is important to keep in mind that the inertial 
coordinate system is non rotating w.r.t the stars (except for pre-
cession of  the equinoxes). 

The angle between the vernal equinox unit vector and Greenwich 
meridian is called αg –the “Greenwich sidereal time.” What we 
need is a convenient way to calculate the angle αg  for any date and 
time of  day. If  we knew what αg  was on a particular day and time 
we could calculate αg  for any future time since we know that in 
one day the earth turns through 1.0027379093 complete rotations 
on its axis.

Suppose we take the value of  αg  at 0h UT on 1 January of  a par-
ticular year and call it αgo. If, in addition, we express time in deci-
mal fractions of  a day, we can convert a particular day and time 
into a single number of  days which have been elapsed since our 
“time zero.” If  we call this number D, then

αg = αgo + 1.0027379093 × 360o × D [In Degrees]           ------(5)

or

αg = αgo + 1.0027379093 × 2 π  × D [In Radians]            ------(6) 

Where

αg = 1.74933340 rad at 1/1/1970 0h:0m:0s.                        ------(7)

The transformation matrix from inertial to ECEF coordinates is 

now computed from
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The body system of  axes is defined in Figure. 4.

The oretical Measurements of  a Moving Gyro 
Triad

The actual measurements of  the accelerometers are the sum of  
the nominal measurements and the errors.  If  the accelerometers 
are stationary and miss-leveled by r, p, and Ɵ  errors about the x, y, 
and z body axes, they will measure a part of  the gravitational force 
according to the relation

                      F = Arp
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− g
0
0

		  (9)

Where, Arpθ is the miss-alignment matrix. The nominal terrestrial 
usage of  the gyros involves sensing the earth rotational compo-
nents. As illustrated in Figure. 5, it is evident that the relation 
between the east velocity component and the longitude could be 
expressed as

         
              φ

λ
φ cos)( hR

V
R
V EE

o

+
==

	 (10)

Referring to Figure. 6, we could also write

hR
V N

o

+
=φ

                                                              		  (11)

Where h is the spacecraft height. Finally, the local-level frame an-
gular velocity components are

                                   ωE = -φ = 
hR

V N

+
		  (12)
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Figure 1. Accelerometer configuration.
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Figure. 2  ECEF and navigation frames.
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ωN = λ cosφ+ωe cosφ = 
hR

V E

+  
+ωe cosφ		  (13)

ωUP = λ sinφ+ωe sinφ  + = tan ϕ+ ωe sin ϕ	 	 (14)

In this treatment we have assumed that the body frame and the 
inertial frame are aligned together. The relationship between the 
navigation frame and the INS body frame is usually established 
through either a stationary alignment process, or by continuous 
external velocity information from GPS receiver. Thus, the at-
titude angles are used in generating the rotation between the b-
frame and the navigation frame. The rotation rates measured by 
the gyros are used to constantly update the transformation matrix 
between the body frame and the navigation frame. This transfor-
mation is used to transform the measured acceleration from the 
body frame to the navigation frame (in the case of  strap down 
INS). Once transformed, integrating the acceleration twice will 
provide the INS position difference w.r.t. an initial point. How-
ever, as mentioned before, accelerometer measurements include 
both the platform and gravity, and hence knowledge of  the gravi-
tational field is mandatory to determine the platform acceleration. 
It is obvious that the INS is fundamentally dependent on an ac-
curate knowledge of  the initial position, velocity, and attitude of  
the moving platform prior to the start of  INS operation.

Modeling the INS

Mathematical Notations

The spacecraft center of  mass position is given by re=[xe y eze]T. 
Transformation matrices are used to transform any navigation 
vector from one computational frame to another. As an exam-
ple, the position vector in the e-frame (earth fixed frame), re, is 
transformed to the i-frame (inertial frame) to give ri through the 

transformation matrix Ri
e , and hence

		  ri =  Ri
e  re	 		  (15)

Transformation from the i-frame to the e-frame is established 
throughout the inverse transformation, Therefore,

                   re = 1)( −Ri
e   ri = Re

i   ri 			   (16)

And the angular velocity of  the e frame w.r.t. the i frame is de-
noted as ω ei . If  this angular velocity is expressed in the e-frame, it 
will be denoted ωe

ei . The rotation between two coordinate frames 
can be expressed as a sum of  rotations between different coordi-
nate frames as

                    
ωe

ei  = ω
e

il  +  ω
e

il 			   (17)
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Rotation can be represented in two ways, an angular velocity vec-
tor, and a skew symmetric matrix comprising the same vector 
components. For example, the angular velocity vector  may be 

represented either in a vector form   ωe

ei  = [ ωx ωy ωz]
T, or in the 

skew matrix form
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Similarly, the velocity vector could be expressed as
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It is also important to note that coordinate transformations apply 
also to angular velocity vectors. As an example, the angular veloc-
ity vector, ωe

ei , could be transformed to the inertial frame using 
the relation

                                ω
i

ei  = Ri
e  ω

e

ie 		  (20)

The equivalent transformation between two skew-symmetric ma-
trices has the special form

                       Ω
i
ei  = Ri

e  Ω
e
ei  R

e
i 		  (21)

If  we have two vectors a and b, their cross product a b can be 
expressed in terms of  their skew symmetric matrices (A or B) as

                                      a×b = A b = -Ba		  (22)

Time Derivative of  the Rotation Matrix

For a fixed point in a certain coordinate frame (body-frame) the 
position vector (r) can be transformed from the body frame, b, to 
the inertial frame, i, by the transformation

                                ri = Ri
b  rb 			   (23)

Differentiation of  both sides of  equation (23) assuming that rb 
is constant (i.e. the point in spacecraft body is assumed to have a 
pure rotational motion without any translation) will give

                            
o
ir  =  

o
i
bR  rb			   (24)

The velocity of  the body could be computed in the inertial frame 
from

                         Vi =  rii

bi

o
ir ×= ω 			  (25)

Using equation (22)we could write equation (25) in the form

                                   rii
bi

o
ir Ω= 			   (26)

Substitution using equation (21), into equation (26) gives

                           =
o
ir   Ri

b  Ωb
bi  R

b
i  r

i 		  (27)

From equation (23) we could write equation (27) in the form

                           =
o
ir  Ri

b  Ωb
bi  Rb

i  Ri
b rb		  (28)

Since the matrix  Rb
i  is the inverse of  the Ri

b  matrix, then Rb
i  

Ri
b  =I and equation (28) is reduced to

                                =
o
ir  Ri

b  Ωb
bi  rb		  (29)

Comparing equation (24) with equation (29) we could easily de-
duce that

                                       
o

i
bR  = Ri

b  Ωb
bi 		  (30)

Calculation of  Position and Velocity Derivatives

The vector ra is transformed from the a coordinate frame to the b 
coordinate frame according to the relation

                                 rb = Rb + Rb
a  ra 		  (31)

Where: Rb is the vector directed from the b-frame origin to the 

a-frame origin, and Rb
a  is the matrix that transforms from the 

a-frame to the b-frame. If  the a-frame rotates w.r.t. the b-frame, 
then differentiation of  equation (31) gives

td
d

rb= td
d

Rb +
 td

d

 
( Rb

a ra)= td
d

td
d

td
d rRrRR a

b
a
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ab ++

                               	
						      (32)

Substitution using equation (30), by replacing the subscript b with 
a and the super script i with b  into equation (32) gives

td
d

rb= vab
a
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b
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b
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						      (33)

Equation (33) has the form of  the coriolis theorem which states 
that, If  two coinciding frames of  reference experience relative 

angular rotation Ωa
ab  (t) with rb(t)= Rb

a  ra(t), and 
o

b
aR  = Rb

a  
)(tb

abΩ  then the time rate of  change of  the two coordinate sys-
tems are related by

=)(tr
o
b  Rb

a (t)[ Ωa
ab (t)ra(t)+ )(tr

o
a ]		  (34)

Taking the second derivative of  equation (33) gives
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Substitution using equation (30) into equation (35) results in
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Mechanization of  inertial frame: The inertial body velocity can 
be expressed using coriolis equation using the following relation

rr
td

dr
td

d
eiei ×+= ω 				    (37)

Differentiating equation (37) and letting d/dt re = ve , we get

ieiiei r
td

d
td

dr
td

d ][v2

2

×+= ω  			   (38)

Application of  equation (37) to the second term in the right hand 
side of  equation (38) gives

iei r
td

d ][ ×ω = 
 

][][ rr
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d
eieieei ××+× ωωω = ×ω ei td

d

 r

+[
 td
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But the earth turn rate is constant, therefore [ td
d

 ] =0, and equa-
tion (39) becom

es

iei r
td

d ][ ×ω = ×ω ei  ve  ][ reiei ××+ ωω 	 (40)

Equation (40) could now be substituted instead of  the second 
term of  equation (38) and this substitution results in

+=
iei td
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d v2

2

×ω ei  ve  ][ reiei ××+ ωω 	 (41)

From which it is evident that

ietd
d v = irtd

d
2

2

- ×ω ei ve ][ reiei ××− ωω 		 (42)

Equation (4) says that a = f  + g, where a =
 

irtd
d

2

2

. 
Consequently, 

equation (42) becomes

ietd
d v

 
=f  -

 
×ω ei  ve  ][ reiei ××− ωω  + g	

(43)
Looking carefully into equation (43) we could easily see that:

1- f : Is the specific force acceleration to which the INS is sub-
jected.

2- ×ω ei  ve : Is the coriolis acceleration.

3- ][ reiei ×× ωω : Is the centripetal acceleration caused by the 
earth rotation with respect to an inertial frame.

4- ][ reiei ××− ωω + g: is the centrifugal acceleration represent-
ing the local gravity vector, gl. So equation (43) could be written as

ietd
d v = f  - ×ω ie  ve  + gl			 

(44)

This equation could be expressed in the inertial frame of  refer-
ence as

i

e

o
v  = fl - 

+× vi

e

i

eiω  gi
l 				   (45)

The accelerometer outputs are the specific forces measured in 
body axes rather than inertial system of  axes, if  a strap down 
package is used. Thus, equation (45) should be written as

i

e

o
v = Ri

b  fb- +× vi

e

i

eiω  gi
l 		  	 (46)

Mechanization of  earth centered fixed frame: Using Coriolis 
equation, the ground velocity expressed in ECEF coordinate sys-

tem, ve
e  , is differentiated with respect to time to give

eetd
d v =

 
ietd

d v - ×ω ei  ve 			   (47)

Substitution from equation (45) results in

eetd
d v = f  - ×ω ei  ve  + gl- ×ω ei  ve

eetd
d v = f-2 ×ω ei  ve  + gl			   (48)

Expressing equation (48) in the ECEF axes gives

e

e

o
v  = fe-2 +× ve

e

e

eiω  ge
l 			   (49)

Mechanization of  navigation frame:  Mechanization of  the 
navigation (local level) frame proceeds as the earth centered fixed 
frame mechanization. The derivatives of  the ground velocity in 
the (local level) frame and the inertial frame of  references are 
related by
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						      (50)

Substitution from equation (45) into equation (50) gives

ietd
d v =fl - ×ω ei ve + ×+ )( ωω leei  ve =f- ×+ )(2 ωω leei ve +gl  

(51)
Equation (51) is expressed in the local level frame by

l

e

o
v = fl - ( ) v2 l

e

l
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l

ei ×+ωω  + gl
l 			   (52)

Mechanization equations for land based users

Referring to Figure.6, The earth rotation angular velocity vector is 
in the same direction of  λ, Thus for earth based users equations   
(12), (13), and (14) include the components of  the earth’s angular 
velocity vector. As a result, let’s define
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So equations (12), (13), and (14) could be put in the form

ω l

li  = ω l

ei  + ω l

le  				    (54)

The first important note is related to the attitude mechanization 
equation. Applying equation (30) in the local level navigation 
frame results in:

o
l
bR  = Rl

b  Ωb
bl 					     (55)

But we know that
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						      (56)
And

Ωb
li   = Ωb

ei  + Ωb
le 				    (57)

Substitution from equation (57) into equation (56) gives

Ωb
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bi  (Ωb
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le )				    (58)

Consequently the attitude mechanization equations become

o
l
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b (Ωb
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ei - Ωb
le )			   (59)

Where the Ωb
bi  matrix is obtained from gyro measurements, 
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le  is the skew symmetric matrix corresponding to the vector  
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le  which could be obtained from 

ωb
el  =  Rb

l  ω
l
el  = Rb

l  























+

+

+

ötan 
hR

V
hR

V
hR

V-

E

E

N

 		

(60) 

And similarly we could compute the skew symmetric matrix   Ωb
ei  

from the corresponding angular velocity vector  ωb

ei  which could 
be computed from

ωb

ei  = Rb
l  
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And Rl
b   is the transformation matrix from the local level to the 

body frame defined by
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						      (62)
With P, the pitch angle (inclination), r is the roll angle, A is the 
azimuth angle.

Finally, the transformation matrix from the local level to the earth 
fixed frame is given by
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(63)

Quaternion attitude representation: Quaternion parameters 
are introduced to describe the rotation of  the b-frame w.r.t. the 
local level frame. The transformation matrix that transforms a 
vector from the reference frame to the body frame is a proper 
real orthogonal one. This means that it preserves the lengths of  
vectors and the angles between them, and also the inverse of  the 
matrix is simply its transpose. So if  A is the transformation matrix 
that transforms a vector from the reference to the body coordi-
nate system, its transpose AT will transform that vector back to 
the reference system. 

It is also known that a proper real orthogonal 3 3 matrix has at 
least one eigenvector with eigenvalue unity [7] and hence there 

exists a unit vector,  ê  that isn’t changed by A so that

eeA ˆˆ = 						     (64)

Which means that the vector  ê   has the same components along 
both body and reference axes, so ê  is the axis of  rotation. This 
demonstrates Euler’s theorem: “the most general displacement of  
a rigid body with one point fixed is a rotation about some axis”.

Referring to the transformation matrices described earlier, for a 

°
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single rotation about single axis, we find that: for a rotation with 
single angle ɸ the trace (sum of  all diagonal elements) of  the cor-
responding transformation matrix is

tr (A(ɸ))=1 + 2 cos  ɸ				    (65)

Generalizing this rule for any sequence of  rotations, we may 
transform any successive rotations to a single rotation by an angle 
ɸ about a unit vector (axis of  rotation) such that

[ ]1)(
2
1cos −=Φ Atr 				    (66)

Examining this equation, we find that it has two solutions for the 
Euler axis / angle ɸ, which differ in sign only. The two solutions 
have the rotation axis vectors   in opposite directions.

This means that a rotation about the vector  ê   by an angle ɸ is 
equivalent to a rotation about the vector -ê  by -ɸ
.  
The Euler symmetric parameters are defined in terms of  Euler 
axis / angle and the components of  the axis of  rotation ê  as fol-
lows

q1 = e1 sin (ɸ/2)					     (67a)
q2 = e2 sin (ɸ/2)					     (67b)
q3 = e3 sin (ɸ/2)					     (67c)
q4 = cos (ɸ/2)					     (67d)

The four Euler symmetric parameters satisfy also the constraint

 12
4

2
3

2
2

2
1 =+++ qqqq 				    (68)

The four parameters could be regarded as the components of  a 
quaternion vector,









=



















=
q

q
q
q
q

q
4

4

3

2

1

q 				    (69)

The direction cosine matrix could be expressed in terms of  qua-
ternion as in equation (70).

( ) ( )
( ) ( )
( ) ( ) 
















++−−+−
−+−+−+
+−+−−

=
qqqqqqqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq

qA
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2
2
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141234231
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2
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2
2

2
14321

42314321
2
4

2
3

2
2

2
1

22
22
22

)( 	 (70)

And also we could inversely express Euler symmetric parameters 
in terms of  the direction cosine matrix as follows

( )2
1

3322111
15.0 AAAq −−+±=

		  (71a)

( )2
1

3322112
15.0 AAAq −+−±=

			  (71b)

( )2
1

3322113
15.0 AAAq +−−±=

			  (71c)

( )2
1

3322114
15.0 AAAq +++±=

			  (71d)

Attitude Mechanization Equations in terms of  
Quaternion

Based on the pre-discussed principals we could write

ωωω b

bl

b

li

b

bi += 					    (72)

Where ωb

bi  is sensed by the gyroscopes. Thus,

ωωω b

li

b

bi

b

bl −= 					     (73)

And similarly,

ωωω b

le

b

ei

b

li += 					     (74)

But we know that, ωb

ei  =   Rb
l  ω

l

ei  and  ωb

le  = Rb
l  ω l

le . Thus 

we could write equation (74) as

ωb

li  = R
b
l  (ω

l

ei  + ω
l

le )= R
b
l  
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	 (75)

Substitution from equation (75) into equation (73) gives

 
−= ωω b

bi
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bl  R
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	 (76)

In order to combine the parameters for two individual rotations 
we find that

])()]['([])''([ qAqAqA = 			   (77)

The resulting quaternion  ''q  could be found from the final at-

titude matrix, or it could be in another different way [7]. If  ''q   
represents the orientation of  the body frame with respect to the 

reference frame at time t + ∆t ,  q  represents it at time t then    'q  
represents the orientation of  the body frame relative to the posi-
tion that it occupied at time t, thus we could write

                   2
sin'1

φ∆
= eq u

			   (78a)
 	

                   2
sin'2

φ∆
= eq v

			   (78b)
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                   2
sin'3

φ∆
= eq w

			   (78c)

                     2
cos'4

φ∆
=q

			 
(78d)

Where eu, ev and ew are the components of  the rotation axis unit 
vector (i.e. they are in the direction of  p, q and r), ∆ɸ =ω ∆t = 

rqp 222 ++   ∆t (this is valid only for an infinitesimal time 

interval ∆t), also we may write

                              ''' qqq =

Or in a matrix form

                          q

qqqq
qqqq
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Replacing 'q  
by the change in Euler axis / angle

q
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Thus we may possibly write
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Where I is the fourth order identity matrix. In addition, all the 
right hand side terms are evaluated at time t. The former equation 
is mostly useful if  the axis of  rotation doesn’t change over the 
time interval ∆t. For the case of  attitude dynamics and prediction, 
equation (81) may be converted to a differential equation, though 
it may be used as it is to reduce the integration effort. Also small 
angles approximation will be used with the assumption of  infini-
tesimal time period ∆t to get

2
  

22
sin     and  1

2
cos t∆

≈
Φ∆

≈
Φ∆

≈
Φ∆ ω

Noting that  ω= ω  ê = [ ωX, ωY ,  ωZ]T is the instantaneous 
angular velocity vector Finally we could write

q(t + ∆t)  ≈ [ ID + Ω (∆t / 2) ]q(t)			   (82)

And Ω  is the skew-symmetric matrix
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0
0

0
0

ωωω
ωωω
ωωω
ωωω

zyx

zxy

yxz

xyz

 		  (83)

Where ω x  , ω y  , and ω z  are the components of  the angular 

velocity vector ωb

bl  .

To go over the main points, the INS mechanization equations 
for land based users are summarized as

Position mechanization equation

The position of  a moving platform described in the l-frame is 
expressed in terms of  the curvilinear coordinates (ϕ, λ, h), where 
ϕ is the latitude, h is the longitude, h is the altitude. Thus, we could 
write

        rl =  

















h
λ
φ

					     (84)

and from equations (10) and (11) we could write
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Velocity mechanization equation

Using equation (52), we could write

l

e

o
v  = fl - ( ) v2 l

e

l

le

l

ei ×+ωω  + gl

l

Thus,

l

e

o
v  = Rl

b   fb- ( ) v2 l

e

l

le

l

ei ×+ωω + gl
l 		  (86)

Equation (86) implies the existence of  a gravity model. To sim-
plify the problem, we present the simplest possible gravity model 
defined by [6]

g(h) = g(0) / (1+h/R)2				    (87)

Where, g(0) = 9.780318 m/s2, and g(h) is the magnitude of  earth 
gravitational vector defined in the local level frame by g = [0 0 
–g(h)]T. The local gravity vector is thus

gl
l  = g  ][ reiei ××− ωω 				   (88)
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Attitude mechanization equations

The mechanization equations of  attitude are given in equation 

(59) as  
o

l
bR = Rl

b ( Ωb
bi

- Ωb
ei

-Ωb
le ) or alternatively in equation 

(82) as  q(t + ∆t) ≈ [ ID + Ω (∆t / 2) ]q(t), and Ω
b
bl   is given by its 

corresponding form of  ω
b

bl   given by equation (76).

Modification of  the Mechanization Equations for 
Space based users

Looking carefully into equations (52), (53), and (54) we could 

deduce some important notes. First, the term ω l

ei , represents a 
component of  the earth’s rotation sensed by a stationary INS (i.e. 
VE = VN = VUP = 0 m/sec) on the earth’s surface. For space based 

users, this term won’t be sensed by the INS at all. So,  ω l

ei  =0, 

and ω l

li  = ω l

le . The second important note is related to the at-
titude mechanization equation. Applying equation (30) in the local 
level navigation frame results in:

o
l
bR = Rl

b Ωb
bl 					     (89)

But we know that

Ωb
bl =Ωb

il + Ωb
bi = Ω− b

li + Ωb
bi = Ωb

bi Ω− b
li 		 (90)

And

Ωb
li = Ωb

ei + Ωb
le 					     (91)

Substitution from equation (91) into equation (90) gives

Ωb
bl = Ωb

bi - ( Ωb
ei + Ωb

le )				    (92)

But Ωb
ei  is the skew-symmetric matrix corresponding to ωb

ei  

which is equal to Rb
l  ω l

ei  , and we also know that ω l

ei  =0. Thus, 
equation (92) reduces to

                        Ωb
bl  =  Ωb

bi  - Ωb
le 			  (93)

Consequently the attitude mechanization equations become

                 
o

l
bR = Rl

b  ( Ωb
bi - Ωb

le )			   (94)

Where the Ωb
bi   matrix is obtained from gyro measurements, 

Ωb
le  is the skew symmetric matrix corresponding to the vector 

ωb

le  which could be obtained from

  ω
b
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Velocity mechanization equation

Using equation (52) in addition to that, ω l

ei  =0 , we could write

l

e

o
v  = fl ( ) v2 l

e

l

le

l

ei ×+ωω  + gl
l   = fl - vl

e

l

le ×ω  + gl
l

Thus,

                
l

e

o
v  =  Rl

b  f
b  - vl

e

l

le ×ω  + gl
l 		  (96)

The gravity model given by equation (88) should now be modified 
to reflect the absence of  earth rotation sensing by the accelerom-

eters (recalling that ω l

ei  =0). So the gravity model becomes

                 gl
l  = g ][ reiei ××− ωω = g		  (97)

Attitude mechanization equations

The mechanization equations of  attitude are given in equation 

(94) as 
o

l
bR = Rl

b ( Ωb
bi  - Ωb

le ) or alternatively in equation (1.99) 

as  q(t + ∆t) ≈  [ ID + Ωb
bl   (∆t / 2) ]q(t), and Ωb

bl  is now given 

by equation (93) instead of  its corresponding form of  ωb

bl  given 
by equation (76).

Conclusion

The most important conclusion coming out from this research 
is that the application through which the SDINS is used affects 
the associated mechanization equations and the gravity model. 
For terrestrial applications, the SDINS model is developed clearly 
with the appropriate systems of  axes. If  the SDINS is utilized by 
a user who isn’t resting on the earth the SDINS model must be 
modified according to section (7).    
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