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Abstract

Surgical treatment for Parkinson’s disease has evolved from permanent removal of  parts of  the brain to minimally invasive 
surgical techniques such as deep brain stimulation. Ample evidence supports the efficacy and safety of  DBS giving rise to 
its use in other clinical settings such as benign tremors, dystonia, epilepsy and other neuropsychiatric disorders. Anesthetic 
and surgical techniques for DBS may vary among institutions and physicians. Indirect surgical technique such as frame-
based imaging, is used to target brain structures even though frameless stereotactic techniques (direct technique) involving 
magnetic resonance imaging (MRI) have been described. Local, general anesthesia, and combined anesthetic techniques 
have been used. Although local anesthesia seems to offer better intraoperative evaluation of  the neurological responses, it 
may be associated with intraoperative complications such as anxiety, hypertension and hemorrhage. General anesthesia is a 
common practice for the insertion of  generator and tunneling of  leads. No standardized guidelines for anesthesia manage-
ment of  Parkinson’s patient undergoing DBS have been described and clinical findings regarding ideal anesthetic technique 
are controversial.
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Introduction

Deep Brain Stimulation (DBS), the procedure of  placing 
stimulating electrodes into targeted brain structures, was first 
introduced in 1987 [1, 2]. There are several theories explaining 
the efficacy of  DBS [3-6], but ample evidence exists on the safety 
and efficacy of  DBS in Parkinson’s disease (PD), leading to 
expanded indications for DBS including benign tremors, dystonia, 
epilepsy and other neuropsychiatric disorders [7, 8] Prior to the 
introduction of  DBS, surgical treatment for PD traditionally 
involved permanent removal of  parts of  the brain – thalamotomy, 
pallidotomy, and cingulotomy [9]. Side effects of  lesions indeep 
brain structures include, but are not limited to, paresis, confusion, 
hypersalivation, dysarthria, and gait disturbances [10-11]. DBS is 
now used in place of  surgical lesioning, and deep brain targets 
vary depending on the underlying disorder [7-8]. The deep brain 
targets in the treatment of  PD include the ventralis intermedius 

nucleus, the subthalamic nucleus, and the globus pallidus [8]. 

DBS is a multi-step procedure that incorporates intracranial 
electrodes inserted surgically, a programmable pulse generator 
implanted under the clavicle or in the abdomen, and an extension 
cable that passes subcutaneously connecting the two [3, 12-
16]. There is currently no consensus on surgical or anesthetic 
approach to DBS and techniques vary between institutions and 
physicians. Generally, local analgesia or a regional block is used 
to place patients securely in a headframe. Frame-based imaging 
is used to target brain structures and plan coordinates of  surgery. 
A burr hole is made in the skull for electrode placement, usually 
under local anesthesia or conscious sedation. Microelectrode 
recordings (MER) guide the placement of  electrodes; additionally, 
macrostimulation is used to ensure the area stimulated helps 
improve the movement disorder with minimal side effects. 
Macrostimulation involves a series of  physical manipulation and 
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mental tasks performed with the patient awake to assess the degree 
of  response to the DBS. Their speech pattern, musculoskeletal 
range of  motion, and the occurrence of  paresthesia, occur during 
this phase of  the procedure. This testing influences the permanent 
placement of  the electrodes. The remaining steps in DBS involve 
internalization of  leads and implantation of  the impulse generator 
into the chest or abdomen [4, 9, 12-16].

The order in which surgical steps occur and the length of  time 
between them may vary. Most commonly, electrode placement 
occurs first, and several days to weeks later, the impulse generator 
is implanted. Anesthetic techniques include local anesthesia, 
conscious sedation, and general anesthesia [3]. The complexity of  
DBS makes anesthetic considerations very important. Anesthetic 
considerations include, but are not limited to, the need for patient 
cooperation, optimization of  patient comfort, difficulty of  airway 
access when the patient is positioned in the headframe and away 
from the anesthesia care provider, facilitation of  intraoperative 
neuromonitoring, and the potential interference of  anesthesia 
with MERs [3, 4, 9]. To date, no guidelines to standardize DBS 
anesthesia protocols have been developed. This review intends to 
categorize the variety of  anesthetic techniques currently present 
in the literature in the hopes of  identifying gaps where future 
studies can be designed to create a standardized and optimized 
DBS anesthesia protocol.

Methods

An extended literature search was conducted to explore anesthetic 
management and outcomes in patients undergoing DBS for 
Parkinson’s disease. Search keywords included “deep brain 
stimulation,” “anesthesia,” “neurodegenerative disorders,” and 
“Parkinson’s.” Focus was placed on recent literature published in 
the last five years.

Discussion

Patients undergoing DBS for Parkinson’s disease may receive 
anesthetic care in the form of: local anesthesia, general anesthesia, 
or monitored anesthesia care (MAC). The following sections 
will discuss these techniques and their outcomes, including 
Unified Parkinson´s Disease Rating Scale part III (UPDRS III)
improvement, and anesthetic-related complications such as 
hemodynamic instability, perioperative cognitive changes, and 
respiratory depression.

Local Anesthesia

A purely local anesthesia technique with long acting agents such 
as bupivacaine may be administered for intracranial insertion of  
the leads. This technique avoids complications associated with 
moderate to deep sedation, such as transient mental changes, 
hemodynamic liability, nausea, vomiting, or restlessness. A partial 
scalp nerve blockade, usually including the supraorbital and 
greater occipital nerves, is used most often as an alternative to 
widespread subcutaneous local infiltration. In fact, Watson and 
Leslie concluded that nerve blocks were less painful compared 
to the subcutaneous infiltration of  local anesthesia, but neither 
technique was superior in preventing pain associated with pin 
placement [17]. Similarly, Gazoni et al., found that the use of  
ropivacaine for skull blockade prior to pin placement did not 

significantly improve patient pain scores in patients receiving 
maintenance anesthesia with remifentanil [18]. It should be noted, 
however, that cardiotoxicity or neurotoxicity might result from 
high levels of  local anesthetics [19, 20].

Among the benefits of  using local anesthesia are the lack of  
pharmacological interference with microelectrode recordings 
(MERs) or macrostimulation testing, as well as shorter anesthesia 
and surgical time [21, 22]. MERs help guide the placement of  
electrodes, so their accuracy is critical for the success of  procedures 
and interference may occur with intravenous anesthetics, such as 
propofol [22]. In addition to MERs, macrostimulation testing is 
very important. Since the goal of  DBS is to treat the symptoms 
of  Parkinson’s, it is helpful to see intraoperatively if  stimulation 
of  the targeted brain region alters the characteristic tremors, 
rigidity, and bradykinesia of  PD. Some medications can interfere 
with these symptoms, thus interfering with macrostimulation 
testing. For example, remifentanil is known to cause rigidity [23].
In a recent retrospective study, Lange et al. found that length of  
surgery was significantly increased (p<0.001) in a group receiving 
propofol and remifentanil anesthesia (330 minutes) compared to a 
group receiving local anesthesia with psychological guidance (245 
minutes) [21].

Although local anesthetics provide good outcomes due to 
excellent MER quality, it should be noted that local anesthesia is 
usually only practical to the burr-hole craniotomy and electrode 
insertion stage of  the DBS procedure. A general anesthetic is 
common practice for insertion of  generator and tunneling of  
leads. 

In a randomized prospective study by Sassi et al., they looked 
at the impact of  sedation with dexmedetomidine. There was a 
control group (n=10) which did not receive any dexmedetomidine 
sedation. Two of  the controls (20%) developed agitation and 
required abortion of  the procedure. After discovering the 
apparent ability of  dexmedetomidine to ease anxiety, Sassi et al. 
terminated the randomization protocol after enrolling 23 patients 
[24].

Anxiety is not only a concern for the patient’s overall comfort, but 
may also induce a severe hypertensive state with the potential risk 
of  intracranial hemorrhage. Yamada et al. noted a case in which 
anxiety-induced hypertension developed under local anesthesia 
and the surgery had to be completed under general anesthesia 
[25]. Furthermore, Glossop and Dobbs were the first to report 
two cases of  coronary artery vasospasm (one of  which was a 
Parkinson’s patient) in DBS under local anesthesia [26]. It is of  
interest that details regarding the specifics of  local anesthetic 
technique and the impact of  awake surgery on patient anxiety 
were not included. 

The development of  perioperative hypertension is a particular 
concern in Parkinson’s patients who exhibit hemodynamic 
instability due to their disease [3, 27, 28].

Some of  the reviewed studies using local anesthesia reported 
hemorrhages, and although unspecified, it is possible that anxiety 
may have played some role in that outcome. For example, Deuschl 
et al., found one case (0.64%) of  perioperative cerebral hematoma 
and two cases (1.3%) of  asymptomatic mild intracerebral 
hematoma [29]. Limousin et al., also reported one case (5%) of  
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intracerebral hematoma [30]. These values do not differ greatly 
from reported values in large retrospective reviews of  DBS 
complications. Fenoy et al., reviewed 1356 DBS procedures and 
found an intraoperative complication rate of  3.4% asymptomatic 
intraventricular hemorrhage (IVH), 1.1% symptomatic 
intracerebral hemorrhage (ICH), and 0.5% asymptomatic ICH 
[31]. Furthermore, Khatib et al., found a 2.8% intracranial 
hemorrhage rate in a retrospective study of  258 DBS procedures 
at the Cleveland Clinic using different anesthetic techniques [12]. 
Interestingly, an age greater than 64 has been reported as an 
independent risk factor for intracranial hemorrhage during DBS 
[12, 32].

Whether patients older than 64 should be excluded or not from 
receiving local anesthesia due to risk of  perioperative hemorrhage, 
might be investigated in order to develop guidelines for DBS 
anesthetic management. 

General Anesthesia

Several studies have investigated PD patient outcomes in 
DBS under general anesthesia. Patients often undergo general 
anesthesia when they are unable to tolerate awake surgery due to 
anxiety, chronic pain, coughing, or severe movement disorders [3, 
33]. General anesthesia is also commonly used in pediatric DBS 
for dystonia [34, 35]. Therefore, the use of  general anesthesia 
extends the inclusion criteria for patients receiving DBS. 

There are some potential advantages of  general anesthesia use in 
DBS patients. This type of  technique allows the anesthesiologist 
to be in full control of  the patient’s physiology, including the 
respiratory system. Endotracheal intubation ensures a secure 
airway, which is a significant concern for the anesthesiologist 
because the stereotactic headframe limits access to the airway in 
emergency situations, such as unplanned conversions to general 
anesthesia. General anesthesia may also lower surgical and 
anesthetic time compared to conscious sedation. After reviewing 
craniotomy cases with an awake anesthetic protocol using 
dexmedetomidine, Dreier et al., found that general anesthesia 
significantly shortened surgery time when compared to the 
conscious sedation technique [36].

Some major anesthetic concerns regarding general anesthesia 
management, including the effect on MER and unwanted 
anesthetic side effects, should be considered. Several studies 
have shown altered neurophysiology with anesthetics, including 
unidentifiable widening of  the background noise and decreased 
neuronal spiking [22, 28, 37]. In addition, macrostimulation testing 
cannot be performed and intraoperative complications may be 
not be easily detected. For example, venous air embolism is often 
identified when an awake patient begins to cough vigorously after 
burr-hole placement [39].

Conversely, there is literature to support the theory that a general 
anesthetic does not affect the ability to effectively elicit MEPs 
and result in a successful DBS placement [28, 40, 42]. Specifically, 
desflurane has been shown to provide adequate intraoperative 
MER [42-44]. Tsai et al., successfully identified neuronal spiking 
in the dorsolateral subthalamic nucleus using desflurane as a 
general anesthetic alongside median nerve stimulation [42]. 
Furthermore, Lettieri et al., found no significant difference in 
neurophysiological data (mean frequency, burst index, pause 

index, and detected spike number) between local anesthesia and a 
general anesthesia protocol with ketamine and remifentanil [41].

There are reported complications of  intraoperative seizures 
and perioperative cognitive changes believed to be related to 
the use of  general anesthesia for DBS placement. Herrick, et 
al., reported that 41% of  17 patients receiving droperidol and 
fentanyl experienced intraoperative seizures [45]. Another study 
has reported a 1.2% rate of  intraoperative seizures using general 
anesthesia with propofol and remifentanil [28]. Interestingly, this 
side effect was not mentioned in any of  the reviewed literature 
regarding local anesthesia use. In addition, rates of  3.7% and 
10% of  transient post-operative confusion were encountered 
in patients undergoing general anesthesia [40, 44]. Hertel et al., 
associated general anesthesia with transient mental changes, 
including cognitive decline and disorientation in 22.2% of  
patients [38].

Lange, et al., found that deep sedation is linked to a significantly 
increased risk of  intraoperative delirium (IOD). In this study, 
patients receiving propofol and remifentanil (group I) as part of  
the asleep-awake-asleep (AAA) technique experience IOD at a 
rate of  7.9%, whereas patients receiving psychological guidance 
with local anesthetics (group II) did not. Overall, their data 
supports the hypothesis that opioid use increases the risk of  IOD; 
however, a large randomized prospective study is necessary to 
confirm these results [21]. Other adverse events related to general 
anesthesia include post-operative nausea and vomiting. According 
to a 2013 study by Hocking et al., nausea and vomiting are a major 
concern for patients and thus, it is important to consider these 
side effects when determining the best management for DBS [46].

Thus, general anesthesia may be compatible with MER, but larger 
randomized controlled studies are needed to develop specific 
guidelines. It should be noted that image-guided electrode 
placement with computed tomography or magnetic imaging may 
also be used as an alternative to MER, but MER will likely prevail 
as an opportunity to learn more about the neurophysiology 
behind deep brain stimulation [47, 48].

Monitored Anesthesia Care (MAC)

MAC appears to be a popular management method, consisting 
of  patient sedation without total annihilation of  intraoperative 
MERs. Propofol and dexmedetomidine are the two most popular 
medications used in this technique. MAC using dexmedetomidine 
and opioids is the recommended management for DBS patients, 
although this recommendation is not specific to Parkinson’s 
patients [49].

Compared to general anesthesia, MAC produces less MERs 
interference. Propofol is often stopped prior to intraoperative 
testing due to concerns of  decreased interaction during the macro 
testing phase. Propofol has an advantage because of  its relatively 
short half-life and it takes approximately 9 minutes for recordings 
to return to pre-propofol levels [22].

In contrast, dexmedetomidine sedation has been successfully 
continued throughout intraoperative testing, easing patient 
anxiety alongside quality recordings [34, 50]. Dexmedetomidine, 
in particular, provides some benefits when used in awake 
neurosurgery, such as hemodynamic stability, control of  violent 
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dyskinesias, and reduced post-operative pain [24, 51, 52].
Benzodiazepines should be avoided entirely, as they interfere with 
MERs [49].

The MAC technique appears advantageous but there are associated 
potential risks involving poor airway control, respiratory depression 
or obstructive sleep apnea, requiring emergent intubation. This 
is of  particular concern in the Parkinson’s population, which is 
significantly affected by obstructive apnea and pulmonary disease 
[3, 53]. Unfortunately, the stereotactic headframe makes airway 
access incredibly difficult. In such emergent situations, the patient 
may have to be taken out of  the stereotactic headframe, therefore 
interrupting the flow of  the surgery. 

Herrick et al., found that 25% of  awake craniotomy patients 
receiving propofol developed respiratory depression [45]. 
Fábregas et al., concluded that a plasmatic propofol concentration 
of  0.35μg/ml reached during stereotactic surgery for Parkinson's 
disease patients minimized the risk of  respiratory depression and 
provided adequate sedation. This concentration was determined 
based on a Target Controlled Infusion (TCI) model [54].

Although Dreier et al., and Jani et al., reported no respiratory 
complications using dexmedetomidine [36, 50], Rozet et al., 
found two cases (9%) of  respiratory complications generated by 
a dexmedetomidine dose higher than 0.6mcg/kg/h in Parkinson’s 
patients [55].

Comparing the Different Management Types: Future 
Directions

A few studies have directly compared the use of  local anesthesia 
and general anesthesia in managing PD patients undergoing 
DBS. In a comparative cohort study, Chen et al., observed 52 PD 
patients receiving bilateral STN DBS, 33 of  who received general 
anesthesia. The remaining 19 patients received local anesthesia. 
UPDRS III post-operative improvement was 46.9% and 49.6% 
for general and local anesthesia, respectively. Rates of  sialorrhea 
(24.24%) and dysarthria (18.18%) in the general anesthesia 
group significantly differed from the local anesthesia group (5% 
sialorrhea and 0% dysarthria). The authors concluded that overall 
anesthetic management did not significantly affect UPDRS 
III outcomes, but use of  desflurane as a general anesthetic 
contributed to more significant cognitive decline, sialorrhea, and 
dysarthria [43].

In 2007, Yamada et al., reviewed 25 Japanese PD patients receiving 
DBS under general (n=15) and local (n=10) anesthesia. UPDRS 
III scores improved 72.7% and 84.50% using an inhalational 
general anesthetic and local anesthetic, respectively. Although 
the local anesthetic shows a greater percentage of  improvement, 
Yamada et al., concluded that the difference between local and 
general anesthetic management was not significant [25]. Lefaucher 
et al., similarly reported no statistically significant difference in 
patient outcomes when general anesthesia was used compared to 
local anesthesia [56].

The reviewed literature supports similar UPDRS outcomes 
regardless of  anesthetic management (local versus general). To 
our knowledge, no randomized control trial has addressed DBS 
outcomes in patients undergoing local versus general anesthesia.
Recently, Van Horne et al., proposed a staging reversal of  DBS, 

traditionally done in the following sequence: burr-hole drilling and 
electrode placement followed by pulse generator placement under 
general anesthesia. Van Horne et al. reversed the staging order 
of  DBS in over 140 patients with movement disorders, including 
Parkinson's. The authors noted that placing the pulse generator 
and drilling the burr holes under general anesthesia reduced 
patient anxiety due to lack of  awareness of  the drilling process. 
The second stage in this reversed model includes microelectrode 
recording and macrostimulation testing under local anesthesia 
[57]. Further investigation of  this technique could show promise 
in the future of  DBS staging and anesthetic management.

DBS and MRI

During the last decade, magnetic resonance imaging (MRI) has 
been used to identify the subthalamic nucleus (STN) for electrodes 
implantation in DBS surgery. 

Currently, indirect technique for STN targeting is well known. 
This technique is based on the use of  stereotactic and anatomical 
landmarks, usually corroborating MER with intraoperative 
stimulation. Direct technique with MRI is becoming an interesting 
alternative to recognize anatomically the STN, avoiding possible 
errors associated with the former such as lack of  precision and 
complications linked to the trajectory of  the leads [58].

Chabardes et al., described the surgical implantation of  leads using 
MRI guidance in 2 patients with PD. Both patients underwent DBS 
surgery under general anesthesia and no surgical complications 
were found. They emphasized the clinical improvement in the 
immediate post-operative period and after 1 year follow-up for 
patient 1 and 2, concluding that frameless stereotactic procedures 
with MRI guidance seemed to be more accurate that indirect 
procedures [58].

Cheng et al., evaluated 39 patients with PD using 1.5T MR 
imaging in 16 patients, and 3T MR imaging in 23 patients for 
leads implantation in STN. They found no difference between 
clinical outcomes in both groups even though 3T MRI improved 
resolution for direct STN targeting [59].

Financial Considerations

Standardizing the anesthetic management of  DBS for Parkinson’s 
disease may have significant financial benefits. DBS is an expensive 
procedure with an approximate average initial surgery cost of  
$65,000 [60]. For anesthesia alone in subthalamic DBS, McClellan 
et al. found the mean cost to range from $3000 - $6000 depending 
on the laterality of  electrode placement. The same research team 
identified the financial burden of  the MER technique, covering 
over 40% of  anesthesia-related expenses [61].

As DBS expands as a treatment option for Parkinson’s patients 
due to changes in inclusion criteria or technological advances, it is 
critical to consider the potential financial burden on the healthcare 
system. 

Conclusion

Currently, there are no standardized guidelines for the anesthetic 
management of  Parkinson’s patients undergoing DBS. General 
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anesthesia has extended the inclusion criteria for DBS, but may 
not be ideal due to potential MER interference and neurological 
complications. Local anesthesia is a cheaper option that avoids 
MER interference, but concerns still remain for patient comfort 
and anxiety-induced hypertension. 

A purely local anesthesia technique remains an option that avoids 
MER interference, but concerns still remain for patient comfort 
and anxiety-induced hypertension. Additionally, a general 
anesthetic will remain an essential aspect to placement of  the 
generator at some point in the staging. 

MAC shows great promise for the anesthetic management of  
patients undergoing DBS, but airway management and possible 
conversion to general anesthesia must be considered by the 
anesthesiologist. 

Further research is necessary to directly compare Parkinson’s 
patient outcomes using these different techniques, especially 
since many of  the reviewed studies considered a low sample size 
and were retrospective in their design. Future large, randomized 
prospective studies will decide the best anesthetic management 
for Parkinson’s patients and lead to standardized guidelines. 
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